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1 S and M matrices

We consider a one-dimensional conductor with a single scattering center characterized by the
potential V(x) which is non-zero between the points x = −a and x = +a. Due to its presence,
incoming plane waves Aikx (A′e−ikx) propagating towards the scatterer in the domain x < −a
(x > +a) give rise to outgoing plane waves propagating away from the scatterer (we take k > 0).
A stationary state of this scattering problem with energy E = ~2k2/2m can be written as :

Ψ(x) =

{
Aeikx +Be−ikx for x < −a,
B′eikx + A′e−ikx for x > a.

(1.1)

Knowing the coefficients A and A′ of the incoming waves, the solution of Schrödinger equation
allows for the determination of the coefficients B and B′ of the outgoing waves. The S matrix
expresses the amplitudes of the outgoing waves as a function of the amplitudes of the incoming
waves : (

B
B′

)
= S

(
A
A′

)
, (1.2)

where one can write in full generality :

S =

(
r t′

t r′

)
(1.3)

1. A stationary state defined by the wave-function Ψ(x) is associated with the particle current
density

j(x) =
~

2mi

(
Ψ∗(x)

dΨ(x)

dx
−Ψ(x)

dΨ∗(x)

dx

)
, (1.4)

and the current density J(x) = ej(x). Calculate the current density associated with the
incident and outgoing waves, as well as that of the state defined in Eq. (1.1).

• x < −a,

j(x) =
~

2mi

([
A∗e−ikx +B∗eikx

]
ik
[
Aeikx −Be−ikx

]
−
[
Aeikx +Be−ikx

]
ik
[
−A∗e−ikx +B∗eikx

])
=

~k
2m

[
|A|2 − A∗Be−2ikx +B∗Ae2ikx − |B|2 + |A|2 − AB∗e2ikx + A∗Be−2ikx − |B|2

]
=

~k
m

[|A|2 − |B|2]

• x > +a similarly,

j(x) = −~k
m

[−|A′|2 + |B′|2]
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Thus, we can write,

J(x) = ej(x) =


+
e~k
m

[
|A|2 − |B|2

]
for x < −a

−e~k
m

[
−|A′|2 + |B′|2

]
for x > +a

2. Defining the column matrices

I =

(
A
A′

)
and O =

(
B
B′

)
, (1.5)

show that current conservation leads to O†O = I†I, and thus to the unitarity of the
scattering matrix, i.e. S†S = I. Establish the resulting relations between the scattering
amplitudes r, r′, t and t′. Express the reflection (R) and the transmission (T ) probabilities
in terms of the scattering amplitudes and establish the relationship between R and T that
results from current conservation.

From current conservation we can write,

J(x)

∣∣∣∣
x<−a

= J(x)

∣∣∣∣
x>+a

=⇒ e~k
m

[|A|2 − |B|2] = −e~k
m

[−|A′|2 + |B′|2]

Leading us to write,

|A|2 + |A′|2 = |B|2 + |B′|2

and we recognize that

I†I = |A|2 + |A′|2 O†O = |B|2 + |B′|2

So we get,

I†I = O†O

from Eq. (1.2) we know that, (
B
B′

)
= S

(
A
A′

)
Which can can be written in two ways,

O = SI, O† = I†S†

Thus,

O†O = (I†S†)(SI) = I†I
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implying that indeed,

S†S = Id =

(
1 0
0 1

)
Now, plugging in the form of S in that equation lead us to,(

r∗ t∗

t′∗ r′∗

)(
r t′

t r′

)
=

(
1 0
0 1

)
Giving us the following equations, ∣∣∣∣∣∣∣∣∣

|r|2 + |t|2 = 1

r∗t′ + r′t∗ = 0

rt′∗ + r′∗t = 0

|t′|2 + |r′|2 = 1

If now we define R = |r|2 and T = |t|2 we indeed get the current conservation in the form
of

R+ T = 1

3. One can also define the transfer matrix M through the relation :(
B′

A′

)
= M

(
A
B

)
(1.6)

Express the matrix elements of M , as a function of r, r′, t and t′.

We know that(
B′

A′

)
= M

(
A
B

)
and

(
B
B′

)
= S

(
A
A′

)
defining,

M =

(
M11 M12

M21 M22

)
S =

(
r t′ t r′

)
This allows us to write,{

B′ = M11A+M12B

A′ = M21A+M22B

{
B′ = rA+ t′A′

B = tA+ r′A′

B′ = M11A+M12B = M11A+M12[rA+ t′A′] = (M11 + rM12)A+M12t
′A′
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which, we can identify with B′ = tA+ r′A′ leading us to,
M11 = t− rM12 = t− rr′

t′

M12 =
r′

t′

And now for the other relation,

A′ = M21A+M22B

which can be rewritten in

B =
A′

M22

− M21

M22

A

which can be identified with B = rA+ t′A′ leading to,
M22 =

1

t′

M21 = − r
t′

The whole transfer matrix M is then,

M =

(
t− rr′

t′
r′

t′

− r
t′

1
t′

)

4. Consider the case where a → 0 with a very high potential, which can be assimilated to
V(x) = aδ(x). Integrating the Schrödinger equation in the interval [0−, 0+], obtain the
discontinuity of dΨ(x)/dx at x = 0, and calculate the scattering ans transfer matrices
characterizing this scatterer.

2 Landauer formula

We consider a one dimensional configuration of a scatterer, defined by a potential V(x) and an
associated scattering matrix S, connected through scatter-free leads to two particle reservoirs
labeled by 1 and 2. The latter are at equilibrium at a temperature T , and have, respectively,
chemical potentials µ1 and µ2. The scattering state Ψ

(1,2)
k (x) is generated by an incoming wave

from the left (right) side of the scatterer with wave-vector k, i.e. it corresponds to the stationary
state (1.1) with A′ = 0 (A = 0). These scattering states are populated by the left (right) reservoir
with a probability given by the Fermi distribution f1,2(ε) = 1/(1 + e(ε−µ1,2)/kBT ).

1. Give the current density for x > 0 associated with the scattering state generated by an
incoming state arising from the left with wave-vector k.
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We can write any plane wave coming from left or right as a superposition,

ψ(x) ∝ 1√
L

(eikx + eikx)

If now we consider a wave coming from the left, this means that we have

ψ(x) =
1√
L
eikx

and thus,

j(x) =
~
m

k

L

leading to,

J(x) = ej(x) =
e~k
mL

2. Choosing a boundary condition for the leads allows to normalize the incoming waves and
quantize the values of k. Taking then the continuum limit in the sum of k, the total current
at x > 0 arising from the left reservoir can be written as

I1→2 = 2e

∫ +∞

0

dk

2π

~k
m
T (k)f1

(
~2k2

2m

)
= 2e

∫ +∞

0

dεv(ε)g(ε)T (ε)f1(ε). (2.1)

The factor of 2 stands for spin-degeneracy, v is the velocity of the incoming electrons, g
the density of states of the one-dimensional lead, and T is the transmission probability.
Comment on the change of variables allowing to go between the two integrals of Eq. (2.1),
in particular identifying the different terms of the two integrands.

We can write the current as,

I1→2 = gs
e

L

∑
k

vkT (k)f1

(
~2k2

2m

)
with gs = 2 the spin degeneracy and vk = ~k/m the mode velocity. We know the density
of state of a 1D lead,

g(ε) =
2

π

∂ε

∂k
=

2

π~v(ε)

Now we can make the continuum limit,

I1→2 = 2
e

L

∑
k

vkT (k)f1

(
~2k2

2m

)
−→ 2e

∫ +∞

0

dk

2π

~k
m
T (k)f1

(
~2k2

2m

)
= 2e

∫ +∞

0

v(ε)g(ε)T (ε)f1(ε)dε

=
2e

h

∫ +∞

0

dεT (ε)f1(ε)
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3. Calling I2→1 the total current at x < 0 arising from the right reservoir (using the sign
convention that currents towards the right are positive), calculate the net current

Itot = I1→2 + I2→1 (2.2)

Similarly, we can write,

I2→1 = −2e

h

∫ +∞

0

dεT (ε)f2(ε)

Thus the total read,

Itot = I1→2 + I2→1 =
2e

h

∫ +∞

0

dεT (ε) [f1(ε)− f2(ε)]

which is the known one channel, two terminals current.
4. The applied bias voltage V is related to the difference between the chemical potentials of

the reservoirs by µ1−µ2 = eV . Noting εF the Fermi energy of the reservoirs in the absence
of a bias voltage, and assuming that eV � kBT � εF, show that the conductance can be
written by the Landauer formula :

G =
2e2

h
T (εF). (2.3)

We can perform two approximations,
— Low temperature approximation, thus, the Fermi-Dirac distribution can be approxi-

mated by an Heaviside function.
— |µ1 − µ2| � EF thus, we can approximate

f1(ε)− f2(ε) ≈
∂f

∂ε
dε

and for the low-temperature limit, this derivative is −δ(ε)
Considering low temperature,

Itot =
2e

h

∫ µ2

µ1

dεT (ε)

And assuming a small potential difference, we get T (ε) ≈ T (EF ), leading us to,

G =
I

V
=

2e2

h
T (EF )
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3 Multimode conductor and quantum point contact (bo-
nus)

In the case of a two or three dimensional conductor, several transverse mode can contribute
to the transport of the electrical current. They correspond to the quantization of the motion
along the directions orthogonal to the direction of propagation (the one dimensional conductor
thus corresponds to the case of a single mode conductor). The scattering of a conductor with N
transverse modes can still be described by a scattering matrix as the one defined in Eq. (1.3) by
replacing the coefficients r, r′, t and t′ by matrices of dimension N ×N .

1. Provide the multimode generalization of Landauer formula Eq. (2.3) (no detailed deriva-
tion is requested).

If we consider a 2D geometry, with a length L and width W ,

ψ(x, y) =

√
2

LW
sin(kyy)eikxx

where ky is quantized following ky = ny
π
W

with ny ∈ N∗. We can then write,

ε =
~2k2x
2m

+
~2k2y
2m

=
~2k2x
2m

+
~2n2

yπ
2

2mW 2

How many transverse modes do we get ? we have ε < εF thus,

ny < int
(
kFW

π

)
≡ Nmodes

we see that we get the maximum number of modes for k = 0. We can write the current in
mode a as follow,

Ia =
∑
b

Ia,b

with

Ia,b =
2e2

h
Ta,b(V1 − V2)

and with Ta,b = |ta,b,|2 that connect the a and b modes. Thus the total current read,

Itot =
∑
a,b

Ia,b =
2e2

h
(V1 − V2)

∑
a,b

Ta,b

ta,b is a N ×N matrix,∑
a,b

Ta,b =
∑
a,b

ta,bt
∗
a,b =

∑
a,b

ta,bt
∗
b,a =

∑
a

(tt†)aa = Tr(tt†)
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Thus,

G =
2e2

h
Tr(tt†)

with h/e2 ≈ 25.8 Ω. In the balistic regime, Ta,b = δa,b (meaning no transport from mode a
to b) and thus,

G =
2e2

h

∑
modes

Θ(EF − Ea) =
2e2

h
Nmodes

where Ea is the energy of the mode a.
2. The quantization of the conductance has first been observed in a quantum point contact

defined in a two-dimensional electron gas within a GaAlAs-GaAs heterostructure. Two
electroced (called gates) deposited at the surface of the sample are used to deplete the
electron gas through the application of a negative DC gate voltage Vg (see Fig.2). The
width of the constriction can then be controlled by changing Vg. Explain how the expe-
rimental data of Fig.2 constitute a proof of the applicability of the multimode Landauer
formula to quantum transport.
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