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I. Equation of motion of an operator in the Heisenberg re-
presentation.

Consider the Hamiltonian of a boson field (representing photons or phonons)

Ĥ =
∑
k

~ωkc
†
kck

Write and solve the equations of motion for the creation and annihilation operators in the Heisen-
berg representation. For a boson field, we recall the commutation relationships : [ck, c

†
k′ = δk,k′ ,

[ck, ck′ ] = [c†k, c
†
k′ ] = 0.

In Heisenberg representation, we can define the evolution operator,

U(0, t) = exp

(
i

~
Ĥt

)
which is not the same as the interaction picture,

H = H0 +H1 −→ H0 = exp

(
i

~
Ĥ0t

)
The Heisenberg representation can be written from the Schrödinger one using,

Q̂H(t) = Û †(t)Q̂SÛ(t)

Thus,

ck,H(t) = Û †ckÛ = exp

(
i

~
Ĥt

)
ck exp

(
− i
~
Ĥt

)
And so,

i~
∂

∂t
ck,H(t) =

[
ck,H(t), Ĥ

]
and thus,

i~
∂

∂t
ck,H(t) = exp

(
i

~
Ĥt

)
[Ck, Ĥ] exp

(
− i
~
Ĥt

)
Thus, we just need to calculate the commutator,

[ck, Ĥ] =
∑
k′

~ωk′ [ck′ , c
†
kck]

=
∑
k′

~ωk′

[
[ck′ , c

†
k]ck + c†k[ck′ , ck]

]
= ~ωkck
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And so,

i~
∂

∂t
ck,H(t) = exp

(
i

~
Ĥt

)
~ωkck exp

(
− i
~
Ĥt

)
= ωkck,H(t)

leading to,

ck,H(t) = ck,H(t = 0) exp(−iωkt) = cke
−iωkt

and similarly,

c†k,H(t) = c†k exp(iωkt)

For the field operators,

ψ̂(~r) =
∑
k

ψk(r)ck

∂ψ̂

∂t
(~r, t) =

∑
k

ψk(~r)
∂ck
∂t

= i
∑
k

ψk(~r)ωkck

For one particle Hamiltonian,

H1p =
p2

2m
+ V (~r)

And thus,

− ~2

2m
∆ + V (~r)

leading to,

i~
∂ψ̂

∂t
=

[
− ~2

2m
∆ + V (~r)

]
ψ̂

which is formally identical to a Schrödinger equation except that ψ̂ is the field operator.

II. Fermionic Hamiltonian in second quantization.

Consider the Hamiltonian of an N -fermion system

H =
N∑
j=1

T (xj) +
1

2

N∑
j 6=l

U(xj, xl),
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given by the sum of one-particle operators T (kinetic energy, impurity potential, etc) and two-
particle operators U (particle interactions). The Hamiltonian operator in second quantization is
given by

Ĥ =
∑
k,k′

c†k 〈k|T |k
′〉 ck′ +

1

2

∑
kk′,ll′

c†kc
†
k′ 〈kk

′|U |ll′〉 cl′cl

The creation and annihilation operators for fermions follow the anticommutation relationships :
{ck, c†k′} = δk,k′ , {ck, ck′} = {c†k, c

†
k′} = 0. The field operators are given by linear combinations

of the annihilation and creation operators (in a complete basis) with the wave-functions as
coefficients :

ψ̂(x) =
∑
k

ψk(x)ck, ψ̂†(x) =
∑
k

ψ∗k(x)c†k

1. Give the anticommutation relations of the field operators {ψ̂(x), ψ̂†(x′)}, {ψ̂(x), ψ̂(x′)} and
{ψ̂†(x), ψ̂†(x′)}.

{ψ̂(x), ψ̂†(x′)} =
∑
kk′

ψk(x)ckψ
∗
k′(x

′)c†k′ +
∑
kk′

ψ†k(x′)c†kψk′(x)ck′

=
∑
kk′

ψk(x)ψ∗k′(x
′){ck, c∗k′}

=
∑
k

psik(x)ψ∗k(x′)

= δ(x− x′)

which is analogous to what we know from ladder operators. The other relations are trivial
to derive from the anticommutation relation.

2. Show that Ĥ can be written as

Ĥ =

∫
d3xψ̂†(x)T (x)ψ̂(x) +

1

2

∫∫
d3xd3x′ψ̂†(x)ψ̂†(x′)U(x, x′)ψ̂(x′)ψ̂(x)

〈k|T |k′〉 =

∫
dx

∫
dx′ 〈k|x〉 〈x|T |x′〉 〈x′|k′〉

=

∫
dxψ∗k(x)T (x)ψk′(x)

∑
kk′

c†k 〈k|T |k
′〉 ck =

∫
dx
∑
kk′

c†kψ
†
kT (x)ck′ψk′

=

∫
dxψ̂†(x)T (x)ψ̂(x)

≡ T
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〈kk′|U |ll′〉 =

∫
dx

∫
dx′ψ∗k(x)ψk′(x

′)U(x, x′)ψl′(x
′)ψl(x)

=
1

2

∫
dxdx′ψ̂†(x)ψ̂†(x′)U(x, x′)ψ̂(x′)ψ̂(x)

= U

Thus,

Ĥ = T + U

III. Density and number of particle operators.

Consider the operators representing the particle-density n(x) =
∑N

j=1 δ(x− xj) and the number
of particles N =

∫
d3xn(x).

1. Give their expressions in second quantization.

2. Write n(x) and N in terms of the field operators.

n̂ =
∑
kk′

c†k 〈k|n |k
′〉 ck′

〈k|n |k′〉 =

∫
dx′ψ†k(x′)δ(x− x′)ψk′(x)

and from previous exercise,

〈k|n |k′〉 = ψ∗k(x)ψk′(x)

thus,

n̂ = ψ̂†ψ̂

N̂ =

∫
dxn̂(x) =

∫
dxψ̂†(x)ψ̂(x) =

∑
k

c†kck
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3. Show that N̂ commutes with the Hamiltonian Ĥ of the previous exercise.

We want to confirm that the number of particles in conserved, which is equivalent to say
that [Ĥ, N̂ ] = 0,

[Ĥ, N̂ ] = [T̂ + Û , N̂ ]

[T̂ , N̂ ] =
∑

kk′lTkk′ [c
†
kck′ , c

†
l cl]

=
∑
kk′l

Tkk′ [δk′lc
†
kcl − δklc

†
l ck]

=
∑
kl

Tkl(c
†
kcl − c

†
l ck)

but we can change the index and so [T̂ , N̂ ] = 0.

IV. Current operator and the perturbation by an electroma-
gnetic field (optional).

Consider the current density operator for N particles

JN(x, t) =
e

2m

N∑
j=1

[(pj − eA(x, t))δ(x− xj) + δ(x− xj)(pj − eA(x, t))]

Where the vector A(x, t) represents the vector-potential of the electromagnetic field. Show that
the matrix element of the one-particle operator J(x, t) between two states |k〉 and |k′〉 is given
by

Jkk′(x, t) = 〈k| J(x, t) |k′〉 =
e

2mi
[ψ∗k(x)∇ψk′(x)− ψk′(x)∇ψ∗k(x)]− e2

m
A(x, t)ψ∗k(x)ψk′(x)

Consider the Hamiltonian of the perturbation

Hex =
e

2m
(pA+ Ap)− e2

2m
A2

Neglecting the term quadratic in A and the last term (diamagnetic) in Jkk′ , show that

〈k|Hex |k′〉 =

∫
d3xA(x, t)Jkk′(x)

Write the operators Ĵ and Ĥex in second quantization and show the relationship

Ĥex = −
∫

d3xA(x, t)Ĵ(x)


