de physique et ingénierie

Université de Strasbourg

University of Strasbourg

Tutorial VI
 Second quantization

R. Jalabert, S. Berciaud

Transcribed by
Pierre Guichard

I. Equation of motion of an operator in the Heisenberg representation.

Consider the Hamiltonian of a boson field (representing photons or phonons)

$$
\hat{H}=\sum_{k} \hbar \omega_{k} c_{k}^{\dagger} c_{k}
$$

Write and solve the equations of motion for the creation and annihilation operators in the Heisenberg representation. For a boson field, we recall the commutation relationships : $\left[c_{k}, c_{k^{\prime}}^{\dagger}=\delta_{k, k^{\prime}}\right.$, $\left[c_{k}, c_{k^{\prime}}\right]=\left[c_{k}^{\dagger}, c_{k^{\prime}}^{\dagger}\right]=0$.

In Heisenberg representation, we can define the evolution operator,

$$
U(0, t)=\exp \left(\frac{i}{\hbar} \hat{H} t\right)
$$

which is not the same as the interaction picture,

$$
H=H_{0}+H_{1} \longrightarrow H_{0}=\exp \left(\frac{i}{\hbar} \hat{H}_{0} t\right)
$$

The Heisenberg representation can be written from the Schrödinger one using,

$$
\hat{Q}_{H}(t)=\hat{U}^{\dagger}(t) \hat{Q}_{S} \hat{U}(t)
$$

Thus,

$$
c_{k, H}(t)=\hat{U}^{\dagger} c_{k} \hat{U}=\exp \left(\frac{i}{\hbar} \hat{H} t\right) c_{k} \exp \left(-\frac{i}{\hbar} \hat{H} t\right)
$$

And so,

$$
i \hbar \frac{\partial}{\partial t} c_{k, H}(t)=\left[c_{k, H}(t), \hat{H}\right]
$$

and thus,

$$
i \hbar \frac{\partial}{\partial t} c_{k, H}(t)=\exp \left(\frac{i}{\hbar} \hat{H} t\right)\left[C_{k}, \hat{H}\right] \exp \left(-\frac{i}{\hbar} \hat{H} t\right)
$$

Thus, we just need to calculate the commutator,

$$
\begin{aligned}
{\left[c_{k}, \hat{H}\right] } & =\sum_{k^{\prime}} \hbar \omega_{k^{\prime}}\left[c_{k^{\prime}}, c_{k}^{\dagger} c_{k}\right] \\
& =\sum_{k^{\prime}} \hbar \omega_{k^{\prime}}\left[\left[c_{k^{\prime}}, c_{k}^{\dagger}\right] c_{k}+c_{k}^{\dagger}\left[c_{k^{\prime}}, c_{k}\right]\right] \\
& =\hbar \omega_{k} c_{k}
\end{aligned}
$$

And so,

$$
i \hbar \frac{\partial}{\partial t} c_{k, H}(t)=\exp \left(\frac{i}{\hbar} \hat{H} t\right) \hbar \omega_{k} c_{k} \exp \left(-\frac{i}{\hbar} \hat{H} t\right)=\omega_{k} c_{k, H}(t)
$$

leading to,

$$
c_{k, H}(t)=c_{k, H}(t=0) \exp \left(-i \omega_{k} t\right)=c_{k} e^{-i \omega_{k} t}
$$

and similarly,

$$
c_{k, H}^{\dagger}(t)=c_{k}^{\dagger} \exp \left(i \omega_{k} t\right)
$$

For the field operators,

$$
\begin{gathered}
\hat{\psi}(\vec{r})=\sum_{k} \psi_{k}(r) c_{k} \\
\frac{\partial \hat{\psi}}{\partial t}(\vec{r}, t)=\sum_{k} \psi_{k}(\vec{r}) \frac{\partial c_{k}}{\partial t}=i \sum_{k} \psi_{k}(\vec{r}) \omega_{k} c_{k}
\end{gathered}
$$

For one particle Hamiltonian,

$$
H_{1 p}=\frac{p^{2}}{2 m}+V(\vec{r})
$$

And thus,

$$
-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{r})
$$

leading to,

$$
i \hbar \frac{\partial \hat{\psi}}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{r})\right] \hat{\psi}
$$

which is formally identical to a Schrödinger equation except that $\hat{\psi}$ is the field operator.

II. Fermionic Hamiltonian in second quantization.

Consider the Hamiltonian of an N-fermion system

$$
H=\sum_{j=1}^{N} T\left(x_{j}\right)+\frac{1}{2} \sum_{j \neq l}^{N} U\left(x_{j}, x_{l}\right)
$$

given by the sum of one-particle operators T (kinetic energy, impurity potential, etc) and twoparticle operators U (particle interactions). The Hamiltonian operator in second quantization is given by

$$
\hat{H}=\sum_{k, k^{\prime}} c_{k}^{\dagger}\langle k| T\left|k^{\prime}\right\rangle c_{k^{\prime}}+\frac{1}{2} \sum_{k k^{\prime}, l l^{\prime}} c_{k}^{\dagger} c_{k^{\prime}}^{\dagger}\left\langle k k^{\prime}\right| U\left|l l^{\prime}\right\rangle c_{l^{\prime}} c_{l}
$$

The creation and annihilation operators for fermions follow the anticommutation relationships : $\left\{c_{k}, c_{k^{\prime}}^{\dagger}\right\}=\delta_{k, k^{\prime}},\left\{c_{k}, c_{k^{\prime}}\right\}=\left\{c_{k}^{\dagger}, c_{k^{\prime}}^{\dagger}\right\}=0$. The field operators are given by linear combinations of the annihilation and creation operators (in a complete basis) with the wave-functions as coefficients :

$$
\hat{\psi}(x)=\sum_{k} \psi_{k}(x) c_{k}, \quad \hat{\psi}^{\dagger}(x)=\sum_{k} \psi_{k}^{*}(x) c_{k}^{\dagger}
$$

1. Give the anticommutation relations of the field operators $\left\{\hat{\psi}(x), \hat{\psi}^{\dagger}\left(x^{\prime}\right)\right\},\left\{\hat{\psi}(x), \hat{\psi}\left(x^{\prime}\right)\right\}$ and $\left\{\hat{\psi}^{\dagger}(x), \hat{\psi}^{\dagger}\left(x^{\prime}\right)\right\}$.

$$
\begin{aligned}
\left\{\hat{\psi}(x), \hat{\psi}^{\dagger}\left(x^{\prime}\right)\right\} & =\sum_{k k^{\prime}} \psi_{k}(x) c_{k} \psi_{k^{\prime}}^{*}\left(x^{\prime}\right) c_{k^{\prime}}^{\dagger}+\sum_{k k^{\prime}} \psi_{k}^{\dagger}\left(x^{\prime}\right) c_{k}^{\dagger} \psi_{k^{\prime}}(x) c_{k^{\prime}} \\
& =\sum_{k k^{\prime}} \psi_{k}(x) \psi_{k^{\prime}}^{*}\left(x^{\prime}\right)\left\{c_{k}, c_{k^{\prime}}^{*}\right\} \\
& =\sum_{k} p s i_{k}(x) \psi_{k}^{*}\left(x^{\prime}\right) \\
& =\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

which is analogous to what we know from ladder operators. The other relations are trivial to derive from the anticommutation relation.
2. Show that \hat{H} can be written as

$$
\begin{aligned}
& \hat{H}=\int \mathrm{d}^{3} x \hat{\psi}^{\dagger}(x) T(x) \hat{\psi}(x)+\frac{1}{2} \iint \mathrm{~d}^{3} x \mathrm{~d}^{3} x^{\prime} \hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}\left(x^{\prime}\right) U\left(x, x^{\prime}\right) \hat{\psi}\left(x^{\prime}\right) \hat{\psi}(x) \\
&\langle k| T\left|k^{\prime}\right\rangle=\int \mathrm{d} x \int \mathrm{~d} x^{\prime}\langle k \mid x\rangle\langle x| T\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid k^{\prime}\right\rangle \\
&=\int \mathrm{d} x \psi_{k}^{*}(x) T(x) \psi_{k^{\prime}}(x) \\
& \sum_{k k^{\prime}} c_{k}^{\dagger}\langle k| T\left|k^{\prime}\right\rangle c_{k}=\int \mathrm{d} x \sum_{k k^{\prime}} c_{k}^{\dagger} \psi_{k}^{\dagger} T(x) c_{k^{\prime}} \psi_{k^{\prime}} \\
&=\int \mathrm{d} x \hat{\psi}^{\dagger}(x) T(x) \hat{\psi}(x) \\
& \equiv T
\end{aligned}
$$

$$
\begin{aligned}
\left\langle k k^{\prime}\right| U\left|l l^{\prime}\right\rangle & =\int \mathrm{d} x \int \mathrm{~d} x^{\prime} \psi_{k}^{*}(x) \psi_{k^{\prime}}\left(x^{\prime}\right) U\left(x, x^{\prime}\right) \psi_{l^{\prime}}\left(x^{\prime}\right) \psi_{l}(x) \\
& =\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} x^{\prime} \hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}\left(x^{\prime}\right) U\left(x, x^{\prime}\right) \hat{\psi}\left(x^{\prime}\right) \hat{\psi}(x) \\
& =U
\end{aligned}
$$

Thus,

$$
\hat{H}=T+U
$$

III. Density and number of particle operators.

Consider the operators representing the particle-density $n(x)=\sum_{j=1}^{N} \delta\left(x-x_{j}\right)$ and the number of particles $N=\int \mathrm{d}^{3} x n(x)$.

1. Give their expressions in second quantization.
2. Write $n(x)$ and N in terms of the field operators.

$$
\begin{gathered}
\hat{n}=\sum_{k k^{\prime}} c_{k}^{\dagger}\langle k| n\left|k^{\prime}\right\rangle c_{k^{\prime}} \\
\langle k| n\left|k^{\prime}\right\rangle=\int \mathrm{d} x^{\prime} \psi_{k}^{\dagger}\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right) \psi_{k^{\prime}}(x)
\end{gathered}
$$

and from previous exercise,

$$
\langle k| n\left|k^{\prime}\right\rangle=\psi_{k}^{*}(x) \psi_{k^{\prime}}(x)
$$

thus,

$$
\begin{gathered}
\hat{n}=\hat{\psi}^{\dagger} \hat{\psi} \\
\hat{N}=\int \mathrm{d} x \hat{n}(x)=\int \mathrm{d} x \hat{\psi}^{\dagger}(x) \hat{\psi}(x)=\sum_{k} c_{k}^{\dagger} c_{k}
\end{gathered}
$$

3. Show that \hat{N} commutes with the Hamiltonian \hat{H} of the previous exercise.

We want to confirm that the number of particles in conserved, which is equivalent to say that $[\hat{H}, \hat{N}]=0$,

$$
\begin{aligned}
& {[\hat{H}, \hat{N}]=[\hat{T}+\hat{U}, \hat{N}] } \\
{[\hat{T}, \hat{N}]=} & \sum k k^{\prime} l T_{k k^{\prime}}\left[c_{k}^{\dagger} c_{k^{\prime}}, c_{l}^{\dagger} c_{l}\right] \\
= & \sum_{k k^{\prime} l} T_{k k^{\prime}}\left[\delta_{k^{\prime} l^{\prime}}^{\dagger} l_{k}^{\dagger} c_{l}-\delta_{k l} c_{l}^{\dagger} c_{k}\right] \\
= & \sum_{k l} T_{k l}\left(c_{k}^{\dagger} c_{l}-c_{l}^{\dagger} c_{k}\right)
\end{aligned}
$$

but we can change the index and so $[\hat{T}, \hat{N}]=0$.

IV. Current operator and the perturbation by an electromagnetic field (optional).

Consider the current density operator for N particles

$$
J_{N}(x, t)=\frac{e}{2 m} \sum_{j=1}^{N}\left[\left(p_{j}-e A(x, t)\right) \delta\left(x-x_{j}\right)+\delta\left(x-x_{j}\right)\left(p_{j}-e A(x, t)\right)\right]
$$

Where the vector $A(x, t)$ represents the vector-potential of the electromagnetic field. Show that the matrix element of the one-particle operator $J(x, t)$ between two states $|k\rangle$ and $\left|k^{\prime}\right\rangle$ is given by

$$
J_{k k^{\prime}}(x, t)=\langle k| J(x, t)\left|k^{\prime}\right\rangle=\frac{e}{2 m i}\left[\psi_{k}^{*}(x) \nabla \psi_{k^{\prime}}(x)-\psi_{k^{\prime}}(x) \nabla \psi_{k}^{*}(x)\right]-\frac{e^{2}}{m} A(x, t) \psi_{k}^{*}(x) \psi_{k^{\prime}}(x)
$$

Consider the Hamiltonian of the perturbation

$$
H^{\mathrm{ex}}=\frac{e}{2 m}(p A+A p)-\frac{e^{2}}{2 m} A^{2}
$$

Neglecting the term quadratic in A and the last term (diamagnetic) in $J_{k k^{\prime}}$, show that

$$
\langle k| H^{\mathrm{ex}}\left|k^{\prime}\right\rangle=\int \mathrm{d}^{3} x A(x, t) J_{k k^{\prime}}(x)
$$

Write the operators \hat{J} and $\hat{H}^{\text {ex }}$ in second quantization and show the relationship

$$
\hat{H}^{\mathrm{ex}}=-\int \mathrm{d}^{3} x A(x, t) \hat{J}(x)
$$

