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Einstein relation for the diffusion coefficient

We consider a system of N independent colloidal (dye or tracer) particles in a volume V of a
solvent of viscosity η ∼ 10−3 Pa.s. We suppose that the density of these colloidal particles is low,
so that they can be considered as independent from each other. We assume these particles are
spheres of radius R of mass density ρ = ρs + ∆ρ slightly larger than ρs, the mass density of the
solvent. The experiment takes place in the gravitational field g on Earth.

Sedimentation

1. Give a quantitative relation on N/V assessing this "low density regime".

V/N = v is the typical available volume for each colloid, the volume estimation where the
colloid will be alone. The low density regime means that v � R3 where R3 is the colloid
volume scale, thus,

N

V
� 1

R3

(V/N)1/3 is the average distance between one colloid and its nearest neighbor.

2. When the solvent and the colloid are at rest, what is F the total sum of forces exerted on
the colloid ?

~F =
∑

~f

Thus we have,

~P = mcell~g

and the Archimedean pull (or buoyancy),

~π = −mfluid~g

with

mfluid =
4

3
πR3[ρs], mcoll =

4

3
πR3[ρs + ∆ρ]

Thus,

~F = ~P + ~π =
4

3
πR3∆ρ~g
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3. When a colloid is moving with a constant velocity v, a viscous force Fvis = −ζv adds to
F . How is ζ related to the viscosity η of the fluid ? To which regime of velocity v is this
formula adapted ?

We know that (6π is not universal but the R dependence on this regime is),

ζStokes = 6πηR

The Stokes regime (meaning where ~Fvis = −ζ~v is valid) occurs when the Reynold number
is little compared to 1,

Reynolds ∼ vL

η/ρfluid
� 1

where L is the typical size of the flow, but here it’s nothing but R.

Example : If we consider the Navier-Stokes equation,

ρ
[
∂t~v + (~v · ~∇)~v

]
= −~∇P + η∆~v + ρ~g

this means that we consider that (~v · ~∇)~v is negligible (no quadratic term).

4. For a colloid of radius ∼ 10 µm, what is the typical time needed for the velocity to re-
lax (i.e. to forget the initial condition) ? What is the typical displacement length during
this time interval ? Show that acceleration term is negligible if the force is slowly spa-
tially/temporally varying.

m~̇v = ~F − ζ~v

we assume temporarily ~F constant. The solution to this equation is,

~v(t) =
~F

ζ
+ ~Ce−t/τ

with τ = m/ζ and ~C a vectorial constant. If we impose that ~v(t = 0) = ~v0, this leads us to

~C = ~v0 −
~F

ζ

hence the full solution,

~v(t) =
~F

ζ

(
1− e−t/τ

)
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for t� τ , we have ~v(t) ∼ ~v0. For t� τ , the exponential is negligible and thus,

~v(t) =
~F

ζ
= ~v∞

We see that τ is the crossover time. t � τ means that the initial condition has been
forgotten.

τ =
m

ζ
∼

4
3
πR3ρcoll

6πηR
∼ 2

9

ρcollR
2

η
∼ 10−5 s

usually in soft-condensed matter physics, we often use ρcoll = 103 kg.m3.
We look for the typical displacement of a colloid. We need a velocity, we have two candidates
for that, either v∞, or the thermal velocity that is vth ∼

√
kBT/mcoll.

v∞ =
4
3
πR3∆ρg

6πηR
∼ 2

9

R2∆ρg

η
∼ 10−5 m.s−1

vth =

√
kBT

mcoll
∼

√
10−23 × 300
4
3
πR3 × 103

∼ 10−5
√

10 m.s−1

So we see that the two velocities are of the same order of magnitude. Thus the typical
length visited by the colloid before reaching the asymptotic velocity (meaning loss of initial
conditions) is

typical length = 10−5 × τ ∼ 10−10 m = 1 Å

This is of atomic scale. Clearly the inertia phenomena occurs on extremely small length-
scale. If the particle experience a (slow) change of force, the acceleration will go to non-zero
value, and thus changing the velocity. But it is at a such reduced scale that we can neglect
this acceleration on the range of forces we are considering on this study.

5. Give the mesoscopic colloidal particle current jdrift(r, t) resulting from the gravitational
drift in terms of n(r, t) the colloid number density and a velocity v∞ that will be precised.

|~jdrift|dSdt is the number of particles crossing d~S pointing downwards during dt,

|~jdrift|dSdt = nv∞dtdS

Thus,
~jdrift = n~v∞



4

6. If the mechanical actions on the colloid considered in this paragraph are all taken into ac-
count, the colloid particles settle at the bottom of the beaker. Estimate the sedimentation
time if ρ = 1.1ρs.

We can estimate it using a 10 cm beaker,

tsolution ∼
10−1

10−5
∼ 104 s
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Fick’s law and Einstein relation

In the XIXth century, Fick showed that an excess concentration of dispersed colloidal dye par-
ticles gives rise to a particle current given by the phenomenological law

jdiff = −D∇n

where D is called the diffusion coefficient.
1. Explain qualitatively why the Fick’s term will counteract the gravitational drift.

Fick observed that the imbalance of dye concentration is responsible for the diffusion,

~jdiff = ~f(~∇n)

if there is no gradient, this current must vanish : ~f(~∇n = 0) = 0. So if ~∇n is small we can
expect a regular first order Taylor expansion of ~f ,

~f(~∇n)
|~∇n|�1∼ constant× ~∇n

With only this phenomenological argument ; Fick arrived to

~jdiffusion = −D~∇n

the minus sign comes from the fact that the dye diffuse from large concentration region
towards diluted region, so that D > 0. Pay attention to the fact that dye do not go far
apart from each others due to repulsive interaction : they do not see each others in the
dilute limit (N/V � R−3 limit).

~jdrift tends to build up concentration gradients (at the bottom), and diffusion replies by
developing a diffusion current ~jdiffusion as vertical flux opposing ~jdrift.
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2. Assuming that the total particle current is j = jdrift + jdiff (why ?), find the equilibrium
profile neq(z).

Why ? because the total current can be seen as a function f(ρ~vdrift,−D~∇n) which, when
we make a linear approximation will lead to αρ~vdrift − βD~∇n and thus, by considering
alone drift and diffusion, we get α = β = +1.
To find the equilibrium profile we say that ~j = ~0 and we find that,

−D~∇neq + neq~v∞ = ~0

We assume that neq = neq(z) and thus,

neq(z) = neq(0) exp
(
−v∞
D
z
)

= neq(0) exp

(
−

F
ζ

D
z

)

3. Deduce the Einstein relation

D =
kBT

ζ

which makes a connection between two phenomenological coefficients of different origins.

It is related to the Boltzmann distribution. Signature of the equilibrium kBT . Fluctuation-
dissipation.

Microscopic origin of the diffusion

In the previous derivation, there is a slight apparent glitch in the reasoning. We assumed throu-
ghout that the velocity of the colloid is constant, but the Fickian diffusion shows that there must
be an overlooked mechanical action at the level of colloids which changes their velocity and leads
to diffusion.

Langevin proposed the dynamical equation

m
dv

dt
= F − ζv + Ffluct

where the last term is a rapidly varying force of zero temporal average, different and uncorrelated
for two distant colloids. This term accounts for the fluctuations of the force of the solvent due
to the molecular nature of the fluid.

1. Find the dynamical equation obeyed by 〈v〉, the mesoscopic local mean over the colloids.

~F is the external potential force where −ζ~v + ~Ffluct is the total action of the fluid on the
colloid. ~Ffluct is a zero mean, very rapidly varying and not space correlated. Clearly, the
only possible microscopic mechanism for the diffusion is from ~Ffluct.
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Now we perform a mesoscopic space average, meaning we take a very small intermediate
volume, meaning we have a large number of colloids N � 1, but the size is small enough
such that ~F can be considered as a constant.
We perform an instantaneous average of the Langevin equation over such a mesoscopic d3τ
volum,

m
d〈~v〉
dt

= ~F − ζ〈~v〉+ 〈~Ffluct〉︸ ︷︷ ︸
O(1/

√
N)∼0

Which is the same equation we consider on the first part of this exercise sheet. This explain
why it was correct to neglect the noise contribution in that first part.
Now, we can also perform a modest time average and consider that,

¯〈v〉(t) =
1

τ

∫ t+τ

t

dt〈v〉(t)

with this modest sliding average the high-frequency features associated to acceleration
disappears. And thus,

¯〈v〉 ≈
~F

ζ

2. Show that the inertia (i.e. all phenomena associated to the term "mass×acceleration" in
the Newton’s law) is as surmised before negligible for 〈v〉. What about the individual ve-
locities ?

3. Conclude about the possible origin of the Fick’s diffusion term.

The only reasonable candidate is ~Ffluct,

4. The Einstein relation is called a "fluctuation-dissipation relation". Why ?

D is associated with the dissipation, and ζ is the friction term, it shows how energy is
degraded, the possible kinetic energy of the colloid, which is mesoscopic ordered energy,
a low-entropy energy. This energy is sucked out of the colloid and disperse into thermal
degree of freedom.

D =
kBT

ρ

They both speak about the interaction of the colloid with the solvent.
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Non-stationary state : the Smoluchowski equation

1. In the non-stationary regime the total current j = jzez does not vanish. Show that jz can
be written in the following form (with U = (4

3
πR3∆ρ)gz)

jz(z, t) = ρ(z, t)vf (z, t) with vf (z, t) = −1

ζ

∂

∂z
[kBT ln ρ(z, t) + U(z)] . (1)

Here, vf (z, t) is sometimes called "current velocity". To which thermodynamic quantity
does the expression in the angular brackets [· · · ] correspond ?

In this regime, since we are out-of-equilibrium,

~j†ot = ~jdrift +~jdiff 6= ~0

~jdrift = ρ(~r, t) ¯〈v〉(~r) = ρ(~r, t)
~F (~r, t)

ζ

~jdiff = −D~∇ρ = −kBT
ζ
ρ~∇(ln ρ)

Thus,

~jtot = ρ

[
~F

ζ
− kBT

ζ
~∇(ln ρ)

]
~F = −~∇U and so,

~j = −ρ
ζ
~∇ [U + kBT ln ρ]

The quantity kBT ln ρ + U correspond to the excess of chemical potential of the colloids
particles.

2. Utilize now the continuity equation relating ρ and j to derive the Smoluchowski equation

∂ρ(z, t)

∂t
= − ∂

∂z

[{
−1

ζ

∂U(z)

∂z

}
ρ(z, t)

]
+D

∂2ρ(z, t)

∂z2
. (2)

This equation is of general validity (i.e. whatever U(z)) and describes the evolution of the
density of a low-density population of colloids or (equivalently) the probability of a single
tracer, via the ergodic hypothesis.

We have also the conservation equation,

∂ρ

∂t
+ div(~j) = 0

and this leads to Eq. (2).


