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Exercise 1 : Carrier density in a semiconductor

Consider electrons in the conduction band of a semiconductor with anisotropic dispersion relation

ε(~k) = εc +
~2

2

(
k2x
mx

+
k2y
my

+
k2z
mz

)
.

a) Show that the dispersion relation can be written as

ε(~q) = εc +
~2

2m∗c
(q2x + q2y + q2z)

with the effective mass m∗c = (mxmymz)
1/3. Express the components qi (i = {x, y, z}) of

the momentum ~q as functions of ki, mi and m∗c .

ε(~k) = εc +
~2

2
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+
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)
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~2

2m∗c
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k2z
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)
= εc +

~2

2m∗c
(q2x + q2y + q2z)

Meaning,

qi = ki

√
m∗c
mi

b) Determine the density of states gc(ε) in such a conduction band. Compare to the free-
electron density of states discussed in TD1.

Number of states under E,

q2x + q2y + q2z ≤
2m∗c(ε− εc)

~2
Thus,

N(ε) =
4

3
π

(√
2m∗c
~2
√
|ε− εc|

)3
V

(2π)3

So the density of states,

g(ε) =
1

V

dN(E)

dE

=
4

3

π

(2π)3

(
2m∗c
~2

)3/2
3

2
|ε− εc|1/2

=
1

(2π)2

(
2m∗c
~2

)3/2√
|ε− εc|

This is valid for ε > εc, it is 0 otherwise.
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c) Express the finite-temperature carrier density nc(T ) in terms of the density of states gc(ε)
and as a function of the chemical potential µ and the temperature T . Show that for
εc−µ� kBT , the carrier density can be approximated by nc(T ) = Nc(T )e

−(εc−µ)/kBT with

Nc(T ) =

∫ +∞

εc

dεgc(ε)e
−(ε−εc)/kBT .

nc(T ) =

∫ +∞

εc

dεgc(ε)
1

e(ε−µ)/kBT + 1

With the condition that εc − µ� kBT , and for ε > εc,

1

e(ε−µ)/kBT + 1
' e−(ε−µ)/kBT

Thus,

nc(T ) =

∫ +∞

εc

dεgc(ε)
1

e(ε−µ)/kBT + 1

≈
∫ +∞

εc

dεgc(ε)e
−(ε−µ)/kBT

=

{∫ +∞

εc

dεgc(ε)e
−(ε−εc)/kBT

}
e−(εc−µ)/kBT

= Nc(T )e
−(εc−µ)/kBT

d) Apply the same reasoning to holes in the valence band, and derive the approximation for
the hole density pv = Pv(T )e

−(µ−εv)/kBT . Give the expression for Pv(T ) and the condition
for the validity of the approximation.

pv(T ) =

∫ εv

−∞
dεgv(ε)

(
1− 1

e(ε−µ)/kBT + 1

)
With the condition that µ− εv � kBT and for ε < εv,

1

e(µ−ε)/kBT + 1
' e−(µ−ε)/kBT
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Thus,

pv(T ) =

∫ εv

−∞
dεgv(ε)

(
1− 1

e(ε−µ)/kBT + 1

)
=

∫ εv

−∞
dεgv(ε)

1

e(µ−ε)/kBT + 1

=

∫ εv

−∞
dεgv(ε)e

−(µ−ε)/kBT

=

∫ εv

−∞
dεgv(ε)e

(µ−εv)/kBT e−(µ−ε)/kBT e−(µ−εv)/kBT

=

∫ εv

−∞
dεgv(ε)e

−(εv−ε)/kBT e−(µ−εv)/kBT

=

{∫ εv

−∞
dεgv(ε)e

−(εv−ε)/kBT
}
e−(µ−εv)/kBT

= Pv(T )e
−(µ−εv)/kBT

e) Show that within the above approximations, the product of nc and pv is independent of the
chemical potential. Express it in terms of the energy gap Eg = εc−εv of the semiconductor.

nc(T )pv(T ) = Nc(T )e
−(εc−µ)/kBTPv(T )e

−(µ−εv)/kBT

= Nc(T )Pv(T )e
−(εc−εv)/kBT

= Nc(T )Pv(T )e
−Eg/kBT
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Exercise 2 : Intrinsic semiconductor

a) Explain the meaning of "intrinsic semiconductor".

If the crystal is pure and the impurities effect is making negligible contribution to the
charge carries, we speaks about intrinsic semiconductor.

b) Assume low enough temperature and use the approximate results for the carrier and hole
densities of Exercise 1. Express the intrinsic carrier density ni = nc = pv in terms of the
energy gap.

ni = (nc(T )pv(T ))
1/2

Thus,

ni(T ) = [Nc(T )Pv(T )]
1/2e−Eg/2kBT

c) Derive an expression for the chemical potential µ from the condition of charge conservation
(equal number of electrons in the conduction band and holes in the valence band).

{
nc(T ) = Nc(T )e

−(εc−µ)/kBT

pv(T ) = Pv(T )e
−(µ−εv)/kBT

nc(T ) = pv(T ) =⇒
Pv
Nc

= e−(εc−µ)/kBT e(µ−εv)/kBT = e2µ/kBT e−(εc+εv)/kBT

Thus,

e2µ/kBT =
Pv
Nc

e+(εc+εv)/kBT

µ =
1

2
kBT ln

[
Pv
Nc

e+(εc+εv)/kBT

]
=

1

2
(εc + εv)

1

2
kBT ln

(
Pv
Nc

)
=

1

2
(Eg + εv + εv) +

1

2
kBT ln

(
Pv
Nc

)
= εv +

Eg
2

+
1

2
kBT ln

(
Pv
Nc

)
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d) Take an energy gap Eg = 0.6 eV, and an effective mass m∗c in the conduction band which
is three times the effective mass m∗v in the valence band. Calculate the temperature for
which the chemical potential µ is situated at εv + Eg/3.

Pv
Nc

∝
(
m∗v
m∗c

)3/2

=

(
1

3

)3/2

We seek T such that,

µ = εv +
Eg
3

= εv +
Eg
2

+
1

2
kBT ln

(
Pv
Nc

)
Which is equivalent to seek,

−Eg
6

= −1

2
kBT

3

2
ln(3)

Thus,

T =
2Eg
9 ln 3

1

kB

T =
3
5
2

9kB ln 3
× 1.605× 10−19 =

2

15 ln 3

1

1.381× 10−23
× 1.605× 10−19 ≈ 1410.51 K
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Exercise 3 : Doped semiconductors

The semiconductor InSb has a gap Eg = 0.18 eV. The dielectric constant of the material is
ε = ε0εr with εr = 17). The effective mass is m∗c = 0.014m0, where m0 is the free electron mass.
Some of the In atoms (group III of the periodic system) are replaced by Si donor atoms (group
IV), with a donor dopant density nd = 1018 cm−3. Let us treat a donor atom as a positively
charged Si atom with a weakly bound electron in a hydrogen-like state.

a) The energy levels of a hydrogen atom are given by

En = −m0e
4

8ε20h
2

1

n2
.

Calculate the ground state energy E1 of the hydrogen atom in eV and determine the ioni-
zation energy (Rydberg constant Ry).

E1 = −
m0e

4

8ε0h2
' −13.6 eV

Ionization energy is the energy you need to add to make the energy go to 0, thus,

EIonization + E1 = 0 =⇒ EIonization =
m0e

4

8ε20h
2
= 13.6 eV > 0
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b) In analogy with the previous case, express the ionization energy of a donor in a semicon-
ductor in units of Ry and calculate its value for Si donors in InSb.

The electron is "far" from the positive site, far in comparison to the lattice constant size,

Ebinding =
m∗

m0

1

ε2r
E1

This 1/ε2r is here because of the modification of the dielectric constant : ε0 → ε = ε0εr.
Thus,

Ebinding =
0.014

172
E1 = 4.8× 10−5E1 = −0.6 meV

And so we get ionization energy,

εionization = εc − εb = −Ebinding = 0.6 meV
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c) Compare the ionization energy to the thermal energy at room temperature and to the
energy gap of the semiconductor.

At T = 300 K, kBT ' 26 meV, and thus,

εionization

kBT
' 0.6

26
' 1

40

Meaning that

εionization � kBT < Eg

d) The typical distance between the electron and the nucleus in a hydrogen atom is given by
the Bohr radius

a0 =
h2ε0
πm0e2

≈ 52.92 pm.

Estimate the distance between a Si donor atom and the weakly bound electron.

r0 =
m

m∗
ε
~2

me2
=

17

0.014
a0 = 1214a0 � a0 ≈ 642 Å

Thus, r0 � a0.
e) Estimate the critical dopant concentration above which the distance between dopants is

small enough to allow for the hopping of electrons between neighboring dopants. At what
temperatures is this effect expected to be important ?

If the distance d is of the order of r0, the wavefunctions can be overlapped. Thus,

nd =
Nd

V
∝ 1

d2

So we get nd = 3.8 × 1015 cm−3, and in the sheet we got nd = 1018 cm−3 that is greater
than this one, meaning that the distance d is lower than r0, thus there is an overlapping
of the wavefunctions.
We saw that

εionization

kBT
' 0.6

26
' 1

40

Thus,

kBTroom = 40εionization

Thus,

εionization =
kBTroom

40
= kBT

∣∣∣∣
T=7.5 K

Thus, as long as we are a temperature greater than 7.5 K, the effect are negligible.
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Exercise 4 : Some simple calculations

a) Estimate the slope of the temperature dependence of the intrinsic carrier concentration
in the vicinity of room temperature, for the semiconductors InAs, Si and GaAs. Intrinsic
carrier concentrations at room temperature (300 K) are for InAs : 8.6 × 1014 cm−3, Si :
1.0× 1010 cm−3, GaAs : 1.8× 106 cm−3. Energy gaps : InAs : 0.36 eV, Si : 1.1 eV, GaAs :
1.43 eV.

ni(T ) = [Nc(T )Pv(T )]
1/2e−Eg/2kBT =

1

4

(
2kBT

π~2

)3/2

(m∗cm
∗
v)

3/4e−Eg/2kBT

To get the slope, we just have to calculate the derivative,

dni
dT

=
1

4
(m∗cm

∗
v)

3/4

(
2kB
π~2

)3/2

︸ ︷︷ ︸
=A

(
3

2
T 1/2e−Eg/2kBT + T 3/2 Eg

2kBT 2
e−Eg/2kBT

)

=
3

2
AT 1/2e−Eg/2kBT + ni

Eg
2kBT 2

=

(
3 +

Eg
kBT

)
ni
2T

For InAs :

dni
dT

∣∣∣∣
300 K

= 0.24× 1014 cm−3.K−1

For Si :

dni
dT

∣∣∣∣
300 K

= 0.07× 1010 cm−3.K−1

For GaAs :

dni
dT

∣∣∣∣
300 K

= 0.17 cm−3.K−1

b) Take the case of doped silicon with an electron density in the conduction band nc = 1016

cm−3 at T = 300 K. Using the value Nc = 7.28× 1019 cm−3 at T = 300 K, determine the
value of the chemical potential with respect to the bottom of the conduction band εc.

nc(T ) = Nc(T )e
−(εc−µ)/kBT
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Thus,

nc
Nc

= e−(εc−µ)/kBT

Meaning,

−kBT ln

(
nc
Nc

)
= εc − µ

So we get,

µ = εc + kBT ln

(
nc
Nc

)
= εc + 300kB ln

(
1016

7.28× 1019

)
= εc + 300kB(−8.89)
= εc − 0.2299 eV

c) Calculate the mean distance between dopants in silicon for dopant concentrations of (1)
1016 cm−3 ; (2) 1018 cm−3 ; and (3) 1020 cm−3.

(1) = 46 nm.
(2) = 10 nm.
(3) = 2.2 nm.


