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The propagation of electromagnetic waves in matter leads to phenomena such
as reflection, transmission and absorption. These quantities can be expressed
as a function of the linear dielectric susceptibility χ̃ (ω) that connects the
applied electric field E and the polarization P.

P (ω) = ε0χ̃ (ω)E (ω)

The polarization P arises from the interactions between E and electric charges
in matter. Modeling these interactions is necessary to express the depen-
dency of χ̃ with ω. In this first chapter, we will review two historical and
phenomenological models of light-matter interaction.

1 Classical model of an atomic dipole - Drude-

Lorentz model

We consider a one-electron atom where both the electron and the nucleus
are supposed to be point particles. Because of the large difference in their
masses, we make the assumption that the nucleus is to be at rest while the
electron is bound to the nucleus by an elastic force:

F = −mω2
0r

where m is the electron mass, ω0 is the natural angular frequency of the
oscillator and r the displacement of the electron from its equilibrium posi-
tion. The system is equivalent to the spring problem in mechanics. The
corresponding atomic dipole p is given by:

p = qr

where q the electronic charge.

1.1 Free evolution

At zero electric field, the classical equation of motion is:

mẍ = −mω2
0x− 2mγẋ

the term −2mγẋ is an effective viscous friction that describes the damping
of the dipole that can occur by collisions, interaction with other dipoles or
radiation (coupling to external fields).

qẍ+ 2γqẋ+ qω2
0x = 0
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p̈+ 2γṗ+ ω2
0p = 0

The characteristic polynomial of this equation is:

λ2 + 2γλ+ ω2
0

∆ = 4γ2 − 4ω2
0

We assume that γ < ω0 so ∆ < 0 and:

λ = −γ ± i
√
ω2
0 − γ2

p = A e−γt e+i
√
ω2
0−γ2 t +B e−γt e−i

√
ω2
0−γ2 t

p must be real so B = A∗

p = e−γt
[
A e+i

√
ω2
0−γ2 t + A∗ e−i

√
ω2
0−γ2 t

]
= e−γt 2 Re

(
A e+i

√
ω2
0−γ2 t

)
= 2 |A| e−γt cos

(√
ω2
0 − γ2 t+ ϕ

)
If γ � ω0:

p ' p0 e
−γt cos (ω0 t+ ϕ)

The dipole oscillates at a frequency close to the natural frequency ω0 and is
damped with a characteristic parameter that is the inverse of a time.

1.2 Forced motion

In the presence of a sinusoidal electric field E (t) = E0 cosωt, the dipole
equation becomes:

p̈+ 2γṗ+ ω2
0p =

q2E0

m
cosωt

Given that the wavelength of light is large compared to the characteristic
dimensions of atoms, we neglect the spatial dependence of the field and look
for the solution in the form:

p (t) = <
(
p (ω) e−iωt

)
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p (ω) e−iωt
(
−ω2 − 2iγω + ω2

0

)
=
q2E0

m
e−iωt

The dependence of the atomic dipole with ω is given by

p (ω) =
q2

m

1

(ω2
0 − ω2 − 2iγω)

E0

With N atoms per unit-volume, the macroscopic polarization is:

P (ω) = N
q2

m

1

(ω2
0 − ω2 − 2iγω)

E0

On the other hand, the complex linear susceptibility χ̃ is defined by:

P (ω) = ε0χ̃ (ω)E0

χ̃ (ω) =
Nq2

ε0mω2
0

ω2
0

(ω2
0 − ω2 − 2iγω)

= χ (0)
ω2
0

(ω2
0 − ω2 − 2iγω)

As expected, χ̃ is a complex number:

χ̃ = χ′ + iχ′′ = |χ̃| e−iϕ

The fact that we choose a minus sign in the argument of the complex expo-
nential enable us to write

P (t) = ε0 |χ̃|E0 cos (ωt+ ϕ)

The modulus and the argument of χ̃ are easy to calculate:

|χ̃| = χ (0)
ω2
0√

(ω2
0 − ω2)

2
+ 4γ2ω2

tanϕ = −χ
′′

χ′
= − 2γω

ω2
0 − ω2

These two quantities are ploted in the figure 1. When ω = ω0, the amplitude
is maximum and the dipole oscillates in quadrature with the field. This is
the resonance phenomenon.
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Figure 1: Amplitude and phase shift of the forced motion of the atomic
dipole.

1.3 Study of the real and imaginary parts of χ̃

In this paragraph, we study in detail the real and imaginary parts of χ.

χ̃ (ω) = χ (0)
ω2
0 (ω2

0 − ω2)

(ω2
0 − ω2)

2
+ 4γ2ω2︸ ︷︷ ︸

χ′

+i χ (0)
2γω2

0ω

(ω2
0 − ω2)

2
+ 4γ2ω2︸ ︷︷ ︸

χ′′

dχ′

dω
= 2χ (0)ω2

0ω
(ω2

0 − ω2)
2 − 4γ2ω2

0[
(ω2

0 − ω2)
2

+ 4γ2ω2
]2

The derivative is zero when:(
ω2
0 − ω2 + 2γω0

) (
ω2
0 − ω2 − 2γω0

)
= 0

The roots are:

ω1,2 = ω0

√
1± 2

γ

ω0
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if γ � ω0, the Taylor expansion (1 + x)α = 1 + αx gives:

ω1,2 ' ω0 ± γ
we subsitute ω by ω2

1,2 = ω2
0 ± 2γω0 in the expression of χ′

χ′ (ω1) = χ (0)ω2
0

(ω2
0 − ω2)

(ω2
0 − ω2)

2
+ 4γ2ω2

χ′ (ω1) = χ (0)ω2
0

2γω0

(2γω0)
2 + 4γ2 (ω2

0 − 2γω0)

= χ (0)ω2
0

2γω0

4γ2ω2
0 + 4γ2ω2

0 − 8γ3ω0︸ ︷︷ ︸
third order in γ

' χ (0)ω2
0

2γω0

4γ2ω2
0 + 4γ2ω2

0

= χ (0)
ω0

4γ

The same calcultion with ω2 gives:

χ′ (ω2) = −χ (0)
ω0

4γ

Imaginary part

χ′′ (ω) = χ (0)ω2
0

2γω

(ω2
0 − ω2)

2
+ 4γ2ω2

When ω is close to ω0 and γ � ω0:

ω2
0 − ω2 = (ω0 + ω) (ω0 − ω) ' −2ω0 (ω − ω0)

χ′′ (ω) = χ (0)ω2
0

2γω0

4ω2
0 (ω − ω0)

2 + 4γ2ω2
0

= χ (0)
2γω0

4 (ω − ω0)
2 + 4γ2

=
χ (0)

2

γω0

(ω − ω0)
2 + γ2

χ′′ (ω) = χ (0)
ω0

2γ︸ ︷︷ ︸
χ′′(ω0)

1

1 +

(
ω − ω0

γ

)2

Around ω0, χ
′′ (ω) has a lorentzian shape centered at ω0. The function has

its maximum divide by 2 when:

χ′′ (ω) =
χ′′ (ω0)

2

This condition is satisfied when

ω = ω0 ± γ
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Figure 2: Diagram of the imaginary (top) and real (bottom) parts of the
dielectric susceptibility.

1.4 Refractive index

We remind that
ε̃r (ω) = 1 + χ̃ (ω) = ñ2

The real and imaginary parts of εr are{
ε′r = n2 − κ2

ε′′r = 2nκ

Solving this system allows to extract the real and imaginary parts of:

ñ(ω) = n(ω) + iκ(ω)

We can then model the coefficients of reflection R(ω) and reflection T (ω) of
a material in the vicinity of a resonance thanks to the Fresnel relation.
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Figure 3: The reflection spectrum of a single resonance with zero and finite
damping for normal incidence.

1.5 Energy transfer

In this part, we describe how the energy from the field is used in matter. We
start from the Maxwell-Ampère equation in matter:

∇×H = j +
∂D

∂t

with H =
B

µ0

−M and D = ε0E+P. We express the dot product E · j which

has the dimension of a power per unit-volume:

E · j = E · ∇ ×H− E · ∂D
∂t

We use the vectorial relation:

∇ · (A×B) = (∇×A) ·B−A · (∇×B)
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A · (∇×B) = (∇×A) ·B−∇ · (A×B)

E · (∇×H) = (∇× E) ·H−∇ · (E×H)

We obtain:

E · j = (∇× E) ·H−∇ · (E×H)− E · ∂D
∂t

By using the Maxwell-Faraday equation, we find:

E · j =
∂B

∂t
·H−∇ · (E×H)− E · ∂D

∂t

Let’s rewrite each term:

E · ∂D
∂t

= E · ∂
∂t

(ε0E + P) = ε0E ·
∂E

∂t
+ E · ∂P

∂t

=
ε0
2

∂E

∂t

2

+ E · ∂P
∂t

H · ∂B
∂t

=
B

µ0

· ∂B
∂t

=
1

2µ0

· ∂B
2

∂t
=
ε0c

2

2
· ∂B

2

∂t

The product E ×H is the Poynting vector. In a non-magnetic material, it
becomes:

E×H =
1

µ0

E×B = ε0c
2E×B

E · j = −ε0
2

∂E2

∂t
− ε0c

2

2
· ∂B

2

∂t
−∇ ·

(
ε0c

2E×B
)
− E · ∂P

∂t

∂

∂t

ε0
2

[
E + c2B

]
= −E · j−∇ ·

(
ε0c

2E×B
)
− E · ∂P

∂t

let’s analyze each of these terms:

• ∂
∂t

ε0
2

[E + c2B] is the time derivative of the electromagnetic energy per

unit volume.

• E · j is the power given to free charges.

• ∇ · (ε0c2E×B) is the power radiated through the surface Σ that en-
closes the considered volume.

• E · ∂P
∂t

is the power needed to modify the polarization.
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Let calculate the time average of E · ∂P
∂t

. We write the field and the polar-

ization in complex notation:

E(t) =
E0

2
e−iωt + c.c. et P(t) =

P(ω)

2
e−iωt + c.c.

∂P

∂t
= −iω

2
P(ω)e−iωt +

iω

2
P∗(ω)eiωt

E · ∂P
∂t

= −iω
4
E0P(ω)e−2iωt+

iω

4
E∗0P

∗(ω)e2iωt− iω
4
E∗0P(ω)+

iω

4
E0P

∗(ω)

When we calculate the time average, the terms in 2ω have a zero contribution,
so we have:

〈
E · ∂P

∂t

〉
=
iω

4
E0P

∗ − iω

4
E∗0P = 2 Re

{(
iω

4
E0P

∗
)}

= 2 Re

{(
iω

4
E0ε0 (χ′ − iχ′′)E∗0

)}
〈
E · ∂P

∂t

〉
=

1

2
ε0ωχ

′′ |E0|2

The power transferred to the medium to modify the volume polarization is
proportional to the imaginary part of the dielectric susceptibility.

1.6 Propagation and attenuation

Let us now calculate the mean value of the Poynting vector. As we are
interested in propagation, we write the field with its spatial dependence:

Ẽ = E0 e
ikz e−iωt

The real field is:

E =
1

2

(
Ẽ + Ẽ∗

)
With k =

ω

c
ñ:

Ẽ = E0 exp
{(
−ω
c
κz
)}

exp
{[
−iω

(
t− nz

c

)]}
A calculation identical to that carried out previously with the complex ex-
pressions of the fields gives us:

S = ε0c
2

〈
E×B

〉
=
ε0c

2

2
Re
(
Ẽ× B̃∗

)
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We then use the Maxwell-Faraday equation:

∇× E = −∂B
∂t

which gives, for monochromatic plane-waves :

ik× Ẽ = iωB̃

hence the expression for B̃:

B̃ =
k

ω
× Ẽ

〈S〉 =
ε0c

2

2ω
Re
[
Ẽ×

(
k× Ẽ

)∗]
=
ε0c

2

2ω
Re
[(

Ẽ · Ẽ∗
)
k∗ −

(
Ẽ · k∗

)
Ẽ
]

〈S〉 =
ε0c

2

2ω
E2 Re (k) =

ε0c
2

2ω
E2nω

c
u

where n is the real part of the refractive index and u a unit vector.

〈S〉 = n
ε0c

2
E2

0 exp
{(
−2

ω

c
κz
)}

u = 〈S0〉 exp
{(
−2

ω

c
κz
)}

u

We write that the energy radiated by the field is damped according to the
law:

〈S〉 = 〈S0〉 exp{(−αz)} u
where α is the absorption coefficient. When the angular frequency ω of the
field is resonant with the natural frequency of the atomic dipole:

χ̃ ' χ′′ (ω0)

We also recall that:
ε̃ (ω) = 1 + χ̃ (ω) = ñ2

we have: {
ε′r = n2 − κ2

ε′′r = 2nκ

We deduce that

α = 2
ω

c
κ = 2

ω

c

ε′′r
2n

=
ω

c

χ′′

n
at the resonance:

χ′′ (ω0) = χ (0)
ω0

2γ
=

Nq2

ε0mω2
0

ω0

2γ
=

1

2

Nq2

ε0mω0γ

hence the absorption coefficient:

α =
1

2

Nq2

ε0mncγ

ω

ω0
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1.7 Conclusion

This simple model, when it is compared with experiments, is in good agree-
ment with measurements (for the modeling of the refractive index, the re-
flectance and absorption coefficients...). The agreement can be very good if
:

• ω0 is a frequency resonnance that is determined experimentally

• the susceptibility is multiplied by an adjustable dimensionless param-
eter called ”oscillator strength” and if the expressions related to the
different resonance frequency of the atom are summed. We obtain a
phenomenological expression of χ(ω):

χ̃(ω) =
Nq2

ε0m

∑
i

fi
ω2
i − ω2 − 2iγω

2 Einstein coefficients

The Einstein model of light-matter interaction is a phenomenological model
that describes the radiation at the thermal equilibrium. Based on thermo-
dynamical arguments, it predicts the stimulated emission of light which en-
ables the amplification of a light field in matter and, hence, the laser effect.
Einstein coefficients are a simple limiting case of the semiclassical model of
light-matter interaction.

Ee

Eg

Ee – Eg = ħω

e

g

A

Bgeu(ω) Begu(ω)

Figure 4: Two level system.
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2.1 Rate equations

We suppose that the field is contained in a box. We will neglect any coherence
or phase information of the radiation and assume it presents a broad thermal
spectrum. The spectral density is denoted u (ω). u (ω) dω is the energy
per unit-volume between ω and dω. The energy density is assumed to be
uniform across the volume of the box. The total electromagnetic energy per
unit-volume is:

u =

∫ +∞

0

u (ω) dω

The density of photons in the frequency band between ω and dω is
u (ω)

~ω
.

The light-field interacts with atoms with two discrete levels |e〉 and |g〉 with
energies Ee and Eg, respectively. Because of the coupling to the electromag-
netic field, an atom can absorb one photon and goes from the ground state
|g〉 to the excited state |e〉, or emit one photon to relax from the excited
state |e〉 to the ground state |g〉. The model is a classical set of rate equation
with an adhoc quantization of the radiation. Three different processes are
are involved:

Spontaneous emission
The atom decays spontaneously from the excited state |e〉 to the ground state
|g〉 by emitting a photon. This emission does not require the presence of the
external applied field to occur and, consequently, does not depend on u (ω0).

dNe

dt

∣∣∣∣
spon

= −ANe

A is a probability per unit time.

Absorption
The atom absorbs radiation at frequency ω0 and makes a transition from |g〉
to |e〉:

dNe

dt

∣∣∣∣
abs

= Bgeu (ω0)Ng

The absorption probability is proportionnal to the spectral density at the
atomic frequency ω0. Bge is in J−1.m3.s−2.

Stimulated emission
This process was introduced by Einstein to take into account the thermal
equilibrium of the atom with the radiation field. An incoming photon induces
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the desexcitation from |e〉 to |g〉 and therefore, the emission of another photon
with frequency ω0.

dNe

dt

∣∣∣∣
stim

= −Begu (ω0)Ne

As for absorption, the probability of stimulated emission is proportionnal to
the spectral density at the atomic frequency ω0.

Taking into account the three different processes, the rate equations
writes: 

dNe

dt
= −ANe −Begu (ω0)Ne +Bgeu (ω0)Ng

Ne +Ng = 1

2.2 Relations between coefficients

In the stationnary régime dN
dt

= 0.

0 = −ANe −Begu (ω0)Ne +Bgeu (ω0)Ng

and:
Ne

Ng

=
Bgeu (ω0)

A+Begu (ω0)

The populations of the two levels are in thermal equilibrium and must obey
the Boltzmann law:

Ne

Ng

= exp

{(
−Ee − Eg

kBT

)}
= exp

{(
− ~ω0

kBT

)}
where kB is the Boltzmann constant. Concerning the spectral density, it is
given by the Planck law:

u (ν0) =
8πhν30
c3

1

exp{(hν0/kBT )} − 1
(J.m−3)

u (ω0) =
1

2π

8πh

c3

(ω0

2π

)3 1

exp{(~ω0/kBT )} − 1
=

~ω3
0

π2c3
1

exp{(~ω0/kBT )} − 1

At high temperatures kBT � ~ω0 and e~ω0/kBT ' 1: The population ratio
given by the Boltzmann law becomes:

Ne

Ng

= exp

{(
− ~ω0

kBT

)}
' 1
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and:
1

ehν0/kBT − 1

tends to very large values because the denominator is close to zero. The
consequence is A� Begu (ω0) and A� Bgeu (ω0). We can write:

Ne

Ng

' Bgeu (ω0)

Begu (ω0)
' 1

We conclude that
Bge = Beg = B

Going back to the general case:

Ng

Ne

=
A+B u (ω0)

B u (ω0)
= exp

{(
~ω0

kBT

)}

A = B u (ω0)

[
exp

{(
~ω0

kBT

)}
− 1

]
u (ω0) =

A

B

1

exp

{(
~ω0

kBT

)}
− 1

by equaling this expression with the general expression of u (ω0) given by the
Planck’s law, we find:

u (ω0) =
~ω3

0

π2c3
1

exp{(~ω0/kBT )} − 1
=
A

B

1

exp{(~ω0/kBT )} − 1

We deduce that:
A

B
=

~ω3
0

π2c3

2.3 Time evolution of populations

Because the system is closed we have Ne +Ng = N and:

dNe

dt
= −ANe −Bu (ω0)Ne +Bu (ω0) (N −Ne)

dNe

dt
+ (A+ 2Bu (ω0))Ne = NBu (ω0)
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It can be integrated by multiplying by e(A+2Bu(ω0))t

dNe

dt
e(A+2Bu(ω0))t + (A+ 2Bu (ω0))Nee

(A+2Bu(ω0))t = NBu (ω0) e
(A+2Bu(ω0))t

Ne e
(A+2Bu(ω0))t = NBu (ω0)

e(A+2Bu(ω0))t

A+ 2Bu (ω0)
+ C

Ne = N
Bu (ω0)

A+ 2Bu (ω0)
+ Ce−(A+2Bu(ω0))t

We make the assumption that, at t = 0, the system is in the ground state:

0 = N
Bu (ω0)

A+ 2Bu (ω0)
+ C

C = −N Bu (ω0)

A+ 2Bu (ω0)

and:

Ne(t) = N
Bu (ω0)

A+ 2Bu (ω0)

[
1− e−(A+2Bu(ω0))t

]
When t→ +∞, the system reaches a steady state and:

Ne(t)→ N
Bu (ω0)

A+ 2Bu (ω0)
= N

u (ω0)

A/B + 2u (ω0)

where we set uS = A/B, the steady state populations become:

Ne(∞) = N
u (ω0)

uS + 2u (ω0)

and:

Ng(∞) = N −Ne(∞) = N
uS + u (ω0)

uS + 2u (ω0)

• For weak field intensity, A� 2Bu (ω0) and:

Ne(t) ' N
B

A
u (ω0)

The population of the excited state is proportionnal to the excitation.
The system is in the linear regime.
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• For intense fields, A� 2Bu (ω0) and:

Ne(t) '
N

2

The population of the excited state tends to the limit value
N

2
, there

is a saturation of the excited state population at high intensities. The
system is the non-linear regime.
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Figure 5: Population of the excited state at long delays as a function of
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1 Introduction

In this chapter, we develop how to model the interaction of a quantized atom
with a classic E.M-field. In a first part, we show how to derive the Hamilto-
nian from the classical one and we discuss the choice of the gauge. Then we
calculate the probability by a pertubative treatment. We also present how
to take phenomenology into account the finite lifetime of an excited state.
Finally, we treat the specific case of the interaction of a two level system that
gives rise to Rabi oscillations.

2 Hamiltonian

2.1 Classical Hamiltonian and the Coulomb Gauge

We start from the classical Hamiltonian of a charged particle in an electro-
magnetic field:

H(r, t) =
1

2m
[p− qA(r, t)]2 + qU(r, t)

where A is the vector potential and U the Coulomb potential. There exists
an infinity of potentials {A(r, t), U(r, t)} corresponding to the same values
of the E.M-field. We remind that:E(r, t) = −∂A(r, t)

∂t
−∇U(r, t)

B(r, t) = ∇×A(r, t)

These fields are invariant under the gauge transformation:U ′(r, t) = U(r, t)− ∂

∂t
Φ(r, t)

A′(r, t) = A(r, t) + ∇Φ(r, t)

were Φ(r, t) is an arbitrary scalar function. The Coulomb gauge corresponds
to the condition:

∇ ·A(r, t) = 0

or, in Fourier space:
k ·A(k, t) = 0

The vector potential is purely transverse:

A(r, t) = A⊥(r, t)
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Consequence for the expression of E(r, t):

E(r, t) = − ∂A⊥(r, t)

∂t︸ ︷︷ ︸
transverse

−∇U(r, t)︸ ︷︷ ︸
??

The condition for E(r, t) to be a tranverse field is:

∇ · E(r, t) = 0

Because the curl of a gradient is always zero:

∇× (∇U(r, t)) = 0

∇U(r, t) is necessary longitudinal and:E⊥(r, t) = −∂A⊥(r, t)

∂t
E‖(r, t) = −∇U(r, t)

The longitudinal component E‖(r, t) is given by:

E‖(r, t) =
1

4πε0

∫
d3r′ ρ(r′, t)

r− r′

|r− r′|3

Where ρ(r′, t) is the charge distribution. The charges responsible for the
existence of U(r, t)), and consequently E(r, t)) are sufficiently far away from
the studied system to satisfy:

∇U(r, t) = 0

Since a constant potential has no physical effect, we set U(r, t) = 0. E⊥ can
be written in the form of a plane-wave:

E⊥ = E0 cos (ωt− kz · z) ex

The magnetic field is calculated using the Maxwell-Faraday equation:

∂

∂t
B = −∇× E = kz · E0 cos (ωt− kz · z) ey

B = −∇× E =
kz
ω
· E0 cos (ωt− kz · z) ey

and finally, taking into account that:

E(r, t) = −∂A⊥(r, t)

∂t

A = −E0

ω
sin (ωt− kz · z) ex

The Hamiltonian finally is finally written:

H(r, t) =
1

2m
[p− qA(r, t)]2
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2.2 Quantum Hamiltonian

The Hamiltonian of a single electron bound to an atom in the absence of
external fields is given by:

Ĥ0 =
p̂

2m
+ V (r̂)

where V (r) is the usual Coulomb interaction binding the electron to the
nucleus, r = |r| and p̂ = −i~∇. We assume that energy eigenstate |n〉 of
Ĥ0, satisfying the time-independent Schrödinger equation:

Ĥ0 |n〉 = En |n〉

are known. In the presence of external field, the Hamiltonian is modified to

Ĥ(r̂, t) =
1

2m
[p̂− qÂ(r̂, t)]2 + V (r)

we develop1:

Ĥ(r̂, t) =
p̂

2m

2

+ V (r)− q

2m
(p̂ ·A⊥(r̂, t) + A⊥(r̂, t) · p̂) + q2A⊥(r̂, t)

2m

2

Ĥ(r̂, t) =
p̂

2m

2

+ V (r)︸ ︷︷ ︸
Ĥ0

− q

m
p̂ ·A⊥(r̂, t) + q2A⊥(r̂, t)

2m

2

Ĥ0 is the usual stationnary Hamiltonian that describes the motion of a
charged particle in a static Coulomb potential. The interaction term is

− q

m
p̂ ·A⊥(r̂, t) + q2A⊥(r̂, t)

2m

2

In the following we will focus on linear optical properties and will make
the assumption that the interaction term is small when compared to Ĥ0.
Then, the second term of the interaction Hamiltonian being quadratic with
A⊥(r̂, t) will be neglected with regards to the linear term.

In the Coulomb gauge, the applied field is completely characterized by its
vector potential A⊥(r̂, t).

1Because A⊥ is not an oprerator there is no commutation issues.

4



Long wavelength approximation
In atom-light interactions, the light wavelength λ is usually very large when
compared to atomic dimensions. For the hydrogen atom, typical emission
and absorption lines have wavelengths in the range of several hundredth of
nanometers while the atomic size is a0 ' 0.053 nm (Bohr radius of hydrogen
atome). The amplitude of the external field is practically constant over the
spatial extent of the atom and:

A⊥(r̂, t) ' A⊥(r0, t)

where r0 is the position of the nucleus. This is what we call Long wavelength
approximation.

2.3 Electric dipole Hamiltonian : Göppert-Mayer Gauge

Maria Göppert-Mayer (1906-1972) was a german born american physicist.
She was the second woman to get the Nobel prize in physics for proposing
the nuclear shell model of the atomic nucleus.

The choice of the present gauge enable to write the interaction Hamiltonian
in a form that is similar to the expression of the energy of a classical dipole.

W = −d · E

Starting from the Hamiltonian in the Coulomb Gauge 2:

Ĥ(r̂, t) =
1

2m
[p̂− q ·A⊥(r̂, t)]2 + V (r)

We use the usual gauge transformation: U ′(r̂, t) = 0− ∂

∂t
Φ(r̂, t)

A′⊥(r̂, t) = A⊥(r̂, t) + ∇Φ(r̂, t)

The Göppert-Mayer gauge consists in choosing:

φ (r̂, t) = − (r̂− r0) ·A⊥(r0, t)

U ′(r̂, t) = (r̂− r0) · ∂
∂t

A⊥(r0, t)

A′(r̂, t) = A⊥(r̂, t)−A⊥(r0, t)

2A(r̂, t) = A⊥(r̂, t) and U(r̂, t) = 0
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Moreover, we have seen that, in the Coulomb gauge, the electric field associ-
ated with the radiation is:

E (r̂, t) = − ∂

∂t
A⊥ (r̂, t)

the electrostatic energy term becomes:

qU ′(r̂, t) = −q (r̂− r0) · E (r̂, t)

introducing the electric dipole operator:

d̂ = q (r̂− r0)

we find:
qU ′(r̂, t) = −d̂ · E (r̂, t)

Ĥ(r̂, t) =
1

2m
[p̂− q · (A⊥(r̂, t)−A⊥(r0, t))]

2 + V (r)− d̂ · E (r̂, t)

Long wavelength approximation
Here again we replace the potentials of the applied field by their values eval-
uated at the atomic nucleus:

A′(r0, t) = A⊥(r0, t)−A⊥(r0, t) = 0

Finally, the Hamiltonian takes the form:

Ĥ(r̂, t) = − p̂

2m

2

+ V (r)− d̂ · E (r̂, t)

The interaction Hamiltonian is the electric dipole operator. It has the same
form as the interaction energy of a classical dipole d located at r0 in an
electric field E.

2.4 Equivalence between A · p̂ and d̂ · E Hamiltonians

We want to establish a relation between the matrix elements of A ·p̂ and d̂ ·E
Hamiltonians. Let us suppose that E and A are polarized alond x. Then,
A · p̂ depends on px while d̂ · E depends on x̂ through d̂. We are going to
write an equation between the matrix elements of x̂ and the matrix elements
of p̂x. The evaluation of the commutator:[

x̂, Ĥ0

]
=

1

2m

[
x̂, p̂2

x

]
6



will help us in this way. Either if we can find the result by writing[
x̂, p̂2

x

]
= [(x̂ p̂x) p̂x − (p̂x x̂) p̂x + p̂x (x̂ p̂x)− p̂x (p̂x x̂)]

= [x̂, p̂x] p̂x − p̂x [x̂, p̂x]

It is quicker to use:
[x̂, F (px)] = i~F ′(px)

with F (p̂x) = p̂2
x. We get directly:[

x̂, Ĥ0

]
=
i~
m
p̂x

We use this relation to calculate the matrix elements:

〈f |[x̂, Ĥ0]|i〉 =
i~
m
〈f |p̂x|i〉

First, we calculate the left-hand side:

〈f |[x̂, Ĥ0]|i〉 = 〈f |x̂ Ĥ0|i〉 − 〈f |Ĥ0 x̂|i〉

= Ei 〈f |x̂|i〉 − Ef 〈f |x̂|i〉

〈f |[x̂, Ĥ0]|i〉 = (Ei − Ef ) 〈f |x̂|i〉 =
i~
m
〈f |p̂x|i〉

Finally, we get the expected relation:

〈f |p̂x|i〉 = i
m

~
(Ef − Ei) 〈f |x̂|i〉

Now, we can compute:

− q

m
〈f |p̂x Ax|i〉

we remind that:

Ax(t, 0) = −E0

ω
sin (ωt)

So:

− q

m
〈f |p̂x Ax|i〉 =

q

m

E0

ω
〈f |p̂x|i〉 sin (ωt)

=
q

m

E(t, z)

ω
i
m

~
(Ef − Ei) 〈f |x̂|i〉 sin (ωt)

=
i

ω

Ef − Ei
~

〈f |qx̂E0|i〉 sin (ωt)

= i
ωfi
ω
〈f |d̂ · E0|i〉 sin (ωt)
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Finally: ∣∣∣∣∣− q

m

〈f |p̂x Ax|i〉
〈f |d̂ · E(t, z)|i〉

∣∣∣∣∣ =
ωfi
ω

3 Probability of transition under the influence of

a sinusoidal E.M-field

3.1 Perturbative approach

Short reminder: Consider a time independent Hamiltonian operator Ĥ0

which eigenenergies En and eigenstates |n〉 are known. The most general
state of the system is written:

|ψ(t)〉 =
∑
k

Ck(t) |k〉

If the system is exposed to a time-dependent external field described by an
operator Ŵ (t), the Hamiltonian becomes:

Ĥ(t) = Ĥ0 + Ŵ (t)

If the matrix element Ŵfi(t) of Ŵ (t) between a initial state |i〉 and a final
state |f〉 is different from zero, a transition occurs. The time dependent
perturbation treatment consists in expanding the time-dependent eigenstate
on the basis of the stationnary states:

|ψ(t)〉 =
∑
n

Cn(t) |n〉

The amplitude of transition between an initial state |i〉 and a final state |f〉,
under the influence of an operator Ŵ (t) is given, at the first order, by:

Sif =
1

i~

∫ t

0

dt′ 〈f |Ŵ (t′)|i〉 ei[(Ef−Ei)/~]t′

with Ef − Ei = ~ωfi. The probability is the square modulus of Sif

Pif = |Sif |2

We are interested in the optical transitions caused by the application of a
sinusoidal E.M-field:

E(r0, t) = E(r0) cos(ωt)
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The interaction Hamiltonian is the electric-dipole operator in the Göppert-
Meyer Gauge with the long-wavelength approximation. The full Hamiltonian
(atom+field) is:

Ĥ(r̂, t) = − p̂

2m

2

+ V (r̂)− d̂ · E (r0, t)

The amplitude of transition between an initial state |i〉 with energy Ei and
a final state |f〉 with energy Ef is:

Sfi = − 1

i~

∫ t

0

dt′ 〈f |d̂ · E (r0, t
′)|i〉 ei(Ef−Ei)t

′/~

−〈f |d̂ · E(r0, t)|i〉 = −〈f |d̂ cos θ|i〉 · E(r0) cos(ωt) = −dfi · E(r0) cos(ωt)

Sfi = −dfi
i~
·E(r0)

2

∫ t

0

dt′[eiωt
′
+e−iωt

′
]·eiωfit

′
= −dfi

i~
·E(r0)

2

∫ t

0

dt′[ei(ωfi+ω)t′+e−i(ω−ωfi)t
′
]

The integration of this expression gives:

Sfi = −dfi
i~
· E(r0)

2

[
ei(ωfi+ω)t − 1

i(ωfi + ω)
+
ei(ωfi−ω)t − 1

i(ωfi − ω)

]

Sfi =
dfi
~
· E(r0)

2

[
1− ei(ωfi+ω)t

ωfi + ω
+

1− ei(ωfi−ω)t

ωfi − ω

]
and the probability is:

Pif =
d2
fi

~2
· |E(r0)|2

4

∣∣∣∣1− ei(ωfi+ω)t

ωfi + ω
+

1− ei(ωfi−ω)t

ωfi − ω

∣∣∣∣2

3.2 Resonance

The probability is proportionnal to the field intensity and takes significant
values when ω = ±ωfi. A resonance process occurs when the angular fre-
quency of the perturbation is equal to the Bohr frequency associated with
the transition between |i〉 and |f〉. We choose the convention of positive
frequencies ω > 0.

• ω − ωfi = 0 means that ωfi > 0 and Ef −Ei > 0. The system absorbs
the radiation at the frequency ω to go in a higher energy state.
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• ω + ωfi = 0 means that ωfi < 0 and Ef − Ei < 0. The system emits a
the radiation at the frequency ω to go in a lower energy state.

Absorption and stimulated emission are described by the same probability.
For a given time t, the probability Pif depends only on ω.

Pif =
d2
fi

~2
· |E(r0)|2

4

∣∣∣∣∣ei(ωfi+ω) t
2
e−i(ωfi+ω) t

2 − ei(ωfi+ω) t
2

ωfi + ω
+ ei(ωfi−ω) t

2
e−i(ωfi−ω) t

2 − ei(ωfi−ω) t
2

ωfi − ω

∣∣∣∣∣
2

Pif =
d2
fi

~2
· |E(r0)|2

4

∣∣∣∣−iei(ωfi+ω) t
2

sin (ωfi + ω) t
2

(ωfi + ω)/2
− iei(ωfi+ω) t

2
sin (ωfi − ω) t

2

(ωfi − ω)/2

∣∣∣∣2

Pif =
d2
fi

~2
· |E(r0)|2

4

∣∣A+ + A−
∣∣2

The probability is the sum of two terms: A+ and A−. The denominator of
A+ cancels for ω = −ωfi while the denominator of A− cancels for ω = ωfi.
In an emission process, Ef < Ei and ωfi < 0 thus A− is negligible and is
called the antiresonant term when A+ is the resonant one. On the contrary,
in an absorption process Ef > Ei and ωfi > 0 thus A+ is negligible and is the
antiresonant term. In the following, we will neglect the antiresonant terms.
This is the so-called resonant approximation.

Let’s consider absorption, the probability of transition is approximated
by:

Pif '
d2
fi

~2
· |E(r0)|2

4

∣∣∣∣−iei(ωfi+ω) t
2

sin (ωfi − ω) t
2

(ωfi − ω)/2

∣∣∣∣2

Pif '
d2
fi

~2
· |E(r0)|2

4

[
sin (ωfi − ω) t

2

(ωfi − ω)/2

]2

The sinc function takes significant values for −π < δω t
2
< π:

ω = ωfi ± 2π/t

The resonance width can be defined as the distance between the first two
zeros of Pif about ω = ωfi. In this interval, the probability takes its largest
values:

δω ' 4π

t
The larger the time t, the smaller the resonance width. δω is not related to
the intrinsic lineshape of the atomic resonance. It is an uncertainty on the
frequency of the applied field due to its finite duration.
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We can write the probability in the following way:

Pif =
d2
fi

~2
· t2 |E(r0)|2

4

[
sin (ωfi − ω) t

2

(ωfi − ω)t/2

]2

to deal with the well-known sinc function. Then, at the exact resonance,
when ω = ωfi:

Pif =
d2
fi

~2
· t2 |E(r0)|2

4
= (

Ω1

2
· t)2

where Ω1 is the Rabi frequency of the transition.

Figure 1: First order probability of transition Pif associated to a sinusoidal
perturbation with angular frequency ω.

3.3 Validity of approximations

On one hand, The resonant approximation is valid if:

2|ωfi| � δω

with δω ' 4π/t i.e.:

t� 2π

|ωfi|
' 2π

ω

On the other hand, the perturbation theory is all right if:

Pif � 1

11



Figure 2: Comparison of δω and ωfi. The resonant approximation is valid if
δω � ωfi.

(
Ω1

2
· t)2 � 1

t� 2

Ω1

In conclusion:
2π

ω
� t� 2

Ω1

4 Transition rate

In this part, we connect the perturbative approach with the Einstein model,
that we have seen in a previous lecture, and that describe the population
time-evolution of a two level atom. Its ground and excited levels are noted
|a〉 and |b〉 respectively. Their populations, Na and Nb, are in equilibrium
with a thermal field and obey the system:

dNb

dt
= −ANb −Bbau (ω0)Nb +Babu (ω0)Na

Nb +Na = N

The density of E.M. energy of the thermal field is:

u(ω) =
1

2
ε0|E(ω, r0)|2

12



Then the density of probability per frequency unit associated to the transition
from an the ground state to the excited state is:

dPab =
d2
ba

~2
· u(ω)

2ε0

[
sin (ω0 − ω) t

2

(ω0 − ω)/2

]2

dω

The total probability is obtained by integrating on all possible frequencies:

Pab =
d2
ba

2ε0~2

∫ +∞

0

u(ω)

[
sin (ω0 − ω) t

2

(ω0 − ω)/2

]2

dω

When t� 2π

ω
, the function

[
sin (ω0−ω)t/2

(ω0−ω)/2

]2

tends to 2πtδ(ω − ω0):

Pab =
d2
ba

2ε0~2
· 2π

∫ +∞

0

u(ω)δ(ω0 − ω)dω

By expliciting the matrix element of the dipole operator:

d2
ba = q2| 〈b|r̂ cos θ|a〉 |2 = q2r2

ba

2

cos θ

We find the probability at time t as a function of θ:

Pab =
πq2r2

fi

ε0~2
·

2

cos θ · u(ω0) · t

By averaging
2

cos θ over all the directions3:

Pab =
πq2r2

ba

3ε0~2
· u(ω0) · t

The transition rate per unit time is:

dPab
dt

=
πq2r2

fi

3ε0~2
· u(ω0)

By comparing to the:

dNa

dt
= Na

dPab
dt

=
πq2r2

ba

3ε0~2
· u(ω0) = Bab · u(ω0) ·Na

Bab =
πq2r2

ba

3ε0~2

3<
2

cos θ >= (4π)−1
∫ 2π

0

∫ π

0
dθ

2

cos θ sin θdϕ
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The corresponding expression for the stimulated emission is identical except
for an interchange of indices a and b since:

| 〈a|r̂|b〉 |2 = | 〈b|r̂|a〉 |2

we get Bab = Bba. and:

Aba =
~ω3

0

π2c3
Bab =

~ω3
0

π2c3

πq2r2
ab

3ε0~2

Aba =
q2r2

abω
3
0

3ε0~πc3

We habe obtained the same result as when we use the quantized-field model.

4.1 Finite lifetime and absorption linewidth

P12 '
d2

21

~2
· |E(r0)|2

4

[
sin (δωt/2)

δω/2

]2

In the absence of the we suppose however that N2 � N1 and N1 ' N .
The probability for finding an atom if level |2〉 is at time t is :

N2(t) = N · d
2
21

~2
· |E(r0)|2

4

∫ t

0

[
sin (δωt′/2)

δω/2

]2

e−Γ21t′dt′

N2(t) = N · d
2
21

~2
· |E(r0)|2

4

4

δω2

1

2

∫ t

0

[
e−Γ21t′ − 1

2
ei(δω+iΓ21)t′ − 1

2
e−i(δω+iΓ21)t′

]
dt′

N2(t) = N · d
2
21

~2
· |E(r0)|2

2δω2

[
− 1

Γ21

e−Γ21τ − ei(δω−iΓ21)t

2i(δω − iΓ21)
+

e−i(δω+iΓ21)t

2i(δω + iΓ21)

]t
0

when t� Γ−1
21 , ei(δω−iΓ21)t → 1 and

N2(t) = N · d
2
21

~2
· |E(r0)|2

2δω2

[
1

Γ21

+
1

2i(δω − iΓ21)
− 1

2i(δω + iΓ21)

]

N2(t) =
N

2Γ21

[
Ω2

1

(ω2 − ω0)2 + Γ2
21

]
The fraction of atoms promoted in the excited state |2〉 is proportionnal to
the intensity of the E.M. wave (Ω1 term). The process presents a resonant
behaviour around the frequency ω0 that follows a Lorentzian law with a
full width at half-maximum 2Γ21. The finite lifetime of the excited state
introduces a broadening of the absorption line.
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5 Two-level system in intercation with an E.M-

field - Rabi oscillations

We consider a two-level atom described by the Hamiltonian:

Ĥ0 =
~
2

(
+ω0 0

0 −ω0

)
with ω0 = (Eb − Ea)/~. This atom interacts with a classical perdiodic E.M.
field:

Ŵab(t) = −〈b|d̂ · E(~r0)|a〉 cosωt = ~ Ω1 cosωt

The total time-dependent Hamiltonian is:

Ĥ(t) = Ĥ0 + Ŵab(t) =
~
2

(
+ω0 2Ω1 cosωt

2Ω1 cosωt −ω0

)
The eigenstates are expanded on the basis of the stationnary states:

|ψ(t)〉 = Ca(t)e
iω0t/2 |a〉+ Cb(t)e

−iω0t/2 |b〉

The time-evolution is given, as always, by the Schrödinger equation:

i~
d |ψ(t)〉
dt

= Ĥ(t) |ψ(t)〉

i~
d

dt

(
Cb(t)e

−iω0t/2

Ca(t)e
iω0t/2

)
=

~
2

(
−ω0 Ω1(eiωt − e−iωt)

Ω1(eiωt − e−iωt) ω0

)(
Cb(t)e

−iω0t/2

Ca(t)e
iω0t/2

)

We apply the rotating-wave approximation:

i

(
Ċb(t)e

−iω0t/2 − iω0

2
Cb(t)e

−iω0t/2

Ċa(t)e
iω0t/2 + iω0

2
Ca(t)e

iω0t/2

)
=

1

2

(
+ω0 Ω1e

−iωt

Ω1e
+iωt −ω0

)(
Cb(t)e

−iω0t/2

Ca(t)e
iω0t/2

)

The terms ω0 cancel.
iĊa(t)e

iω0t/2 =
Ω1

2
Cb(t)e

−iω0t/2eiωt

iĊb(t)e
−iω0t/2 =

Ω1

2
Ca(t)e

iω0t/2e−iωt

15



Finally: ∣∣∣∣∣∣∣∣
Ċa(t) =

Ω1

2i
Cb(t)e

i(ω−ω0)t =
Ω1

2i
Cb(t)e

iδωt

Ċb(t) =
Ω1

2i
Ca(t)e

−i(ω−ω0)t =
Ω1

2i
Ca(t)e

−iδωt

In order to remove the time dependency, we set:∣∣∣∣∣∣
Ca(t) = ba(t)e

i(δω/2)t

Cb(t) = bb(t)e
−i(δω/2)t

It gives: ∣∣∣∣∣∣∣∣
ḃa(t)e

i(δω/2)t + i
δω

2
ba(t)e

i(δω/2)t =
Ω1

2i
bb(t)e

i(δω/2)t

ḃb(t)e
−i(δω/2)t − iδω

2
bb(t)e

−i(δω/2)t =
Ω1

2i
ba(t)e

−i(δω/2)t

We have to solve a system of coupled differential equations with contant
coefficients: ∣∣∣∣∣∣∣∣

ḃa(t) =
δω

2i
ba(t) +

Ω1

2i
bb(t)

ḃb(t) =
Ω1

2i
ba(t) −

δω

2i
bb(t)

We can for example transform the system in a second-order equation by
substituting bb(t): ∣∣∣∣∣∣∣∣∣∣

bb(t) =
2i

Ω1

[
ḃa(t)−

δω

2i
ba(t)

]

ḃb(t) =
2i

Ω1

[
b̈a(t)−

δω

2i
ḃa(t)

]
2i

Ω1

[
b̈a(t)−

δω

2i
ḃa(t)

]
=

Ω1

2i
ba(t)−

δω

2i

2i

Ω1

[
ḃa(t)−

δω

2i
ba(t)

]
The first-order derivatives cancel.

b̈a(t) +
ḃa(t)

4
(Ω2

1 + δω2) = 0

We calculate the discriminant:

∆ = −(Ω2
1 + δω2)
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and find the roots:

λ1,2 = ± i
2

√
Ω2

1 + δω2 = ± i
2

Ω∣∣∣∣∣∣∣∣
ba(t) =A ei(Ω/2)t +B e−i(Ω/2)t

bb(t) =
2i

Ω1

[
ḃa(t)−

δω

2i
ba(t)

]
=

2i

Ω1

[
(i

Ω

2
A eiΩt − iΩ

2
B e−iΩt)− δω

2i
(A ei(Ω/2)t +B e−i(Ω/2)t)

]
∣∣∣∣∣∣∣∣
ba(t) =A eiΩt +B e−iΩt

bb(t) =
2i

Ω1

[
−A

(
Ω

2i
+
δω

2i

)
ei(Ω/2)t +B

(
Ω

2i
− δω

2i

)
e−i(Ω/2)t

]
The constants A and B are determined by the intial condition. The system
is in the ground-state |a〉 at t = 0.∣∣∣∣∣∣∣

ba(0) = 1 = A +B

bb(0) = 0 =
1

Ω1

[−A (Ω + δω) +B (Ω− δω)]

The solution is: ∣∣∣∣∣∣∣∣
A =

Ω− δω
2Ω

B =
Ω + δω

2Ω

Thus can we write the time-dependency of the coefficients ba(t) and bb(t):∣∣∣∣∣∣∣∣∣
ba(t) =

Ω− δω
2Ω

eiΩt +
Ω + δω

2Ω
e−iΩt

bb(t) =
1

Ω1

[
−Ω− δω

2Ω
(Ω + δω) ei(Ω/2)t +

Ω + δω

2Ω
(Ω− δω) e−i(Ω/2)t

]
Finally, we get:

ba(t) = cos

(
Ω

2
t

)
− iδω

Ω
sin

(
Ω

2
t

)

bb(t) = − iΩ1

Ω
sin

(
Ω

2
t

)
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Rabi oscillations
The probability for a transition |a〉 to |b〉 to occur, is:

Pab(t) = |Cb(t)|2 = |bb(t)|2 =
Ω2

1

Ω2

2

sin

(
Ω

2
t

)

Pab(t) =
Ω2

1

Ω2
1 + δω2

2

sin

(
1

2

√
Ω2

1 + δω2t

)
The probability Pab oscillates in time at the generalized Rabi frequency
Ω =

√
Ω2

1 + δω2 between 0 and a maximum value:

Pmaxab =
Ω2

1

Ω2
1 + δω2

=
Ω2

1

Ω2
1 + (ω − ω0)2

Pmaxab presents a resonant behaviour for ω = ω0. The lineshape is a Lorentz

2π/Ω1π/Ω1π/2Ω1 3π/2Ω1

Time (s)

Figure 3: Time evolution of the transition probability Pab for different values
of the detuning δω = ω−ω0. The result of the first order perturbation theory
is also displayed.

function the full-width of it is equal to 2Ω1. At very short times we can write:

sin

(
Ω

2
t

)
' Ω

2
t

and:

Pab(t) '
Ω2

1

Ω2

(
Ω

2
t

)2

=
Ω2

1

4
t2
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This the same result that we have obtainde by using the first-order time
dependent perturbation theory. As it can be seen in the figure 3, the perur-

bative approach remains valid while t� 2π

Ω
.

Coherent transients & π/2-pulses
A resonant E.M. field (δω = 0) is switched on at t = 0 and switched of at
t = 1

Ω1

π
2
. The time-evolution of the atomic sate is:

|ψ(t)〉 = ba(t)e
iω0t/2 |a〉+ bb(t)e

−iω0t/2 |b〉

with: ∣∣∣∣∣∣∣∣∣∣
ba(t) = cos

(
Ω

2
t

)
− iδω

Ω
sin

(
Ω

2
t

)

bb(t) = − iΩ1

Ω
sin

(
Ω

2
t

)
and Ω =

√
Ω2

1 + δω2. If we chose δω = 0, we get:∣∣∣∣∣∣∣∣∣∣
ba(t) = cos

(
Ω1

2
t

)

bb(t) = − i sin

(
Ω1

2
t

)
Then, in the specific case of a π

2
-pulse, we obtain:∣∣∣∣∣∣∣∣∣∣

ba(t) = cos

(
Ω1

2

π

2Ω1

t

)
=

1√
2

bb(t) = − i sin

(
Ω1

2

π

2Ω1

t

)
= − 1√

2

and, consequently:

|ψ(t)〉 =
1√
2
eiω0t/2 |a〉 − i√

2
e−iω0t/2 |b〉

We notice that:

| 〈1|ψ(t)〉 |2 = | 〈2|ψ(t)〉 |2 =
1

2

Thus, the probabilities for the atom to be in either state does not change
in time. But, it does not mean that the system does not evolve at all. Let
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us calculate the expectation value of the electric dipole operator between |a〉
and |b〉:

〈ψ(t)|d̂|ψ(t)〉 =

[
1√
2
e−iω0t/2 〈a|+ i√

2
eiω0t/2 〈b|

]
d̂

[
1√
2
eiω0t/2 |a〉 − i√

2
e−iω0t/2 |b〉

]
Taking into account that 〈a|d̂|b〉 = 〈b|d̂|b〉 = 0 and 〈a|d̂|b〉 = 〈b|d̂|a〉 = dab,
we find:

〈ψ(t)|d̂|ψ(t)〉 = − i
2
〈a|d̂|b〉 e−iω0t +

i

2
〈b|d̂|a〉 = dabe

iω0t = −dab sinω0t

The dipole-moment oscillates at the Bohr-frequency ω0. This oscillation goes
along with emission of light at the same frequency. Although emitted at the
same frequency ω0 as spontaneous emission between the same two energy lev-
els, this light has different properties related to the coherence of the emission.
The phase of the oscillations of the atomic dipole is uniquely determined with
respect to that of the incident wave. An assembly of atoms all prepared by
the same π/2-pulse will therefore all emit light with the same phase. This
is in contrast to what occurs with spontaneous emission, when individual
atoms emit light with a random phase. It is possible to observe the conse-
quences of this coherence in experiments. These include the directionality of
the emission, the appearance of phenomena related to the beating of fluores-
cence light with a beam coherent with the driving light. Such phenomena,
known as coherent transients, can be observed only over a timescale which is
short compared to the radiative lifetimes of the atomic states involved.
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Chapter 3: Density-matrix treatment of a
two-level system

December 1, 2022

Contents

1 Introduction 2

2 Essentials of the density-matrix 2
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Application to a two-level system - Optical Bloch equations 4
3.1 Derivation of OBE . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Free evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Driven system . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Stationnary regime . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Bloch vector 12
4.1 The two-level system seen as a spin 1/2 . . . . . . . . . . . . 12
4.2 Definition of the Bloch vector . . . . . . . . . . . . . . . . . . 13
4.3 Geometrical representation . . . . . . . . . . . . . . . . . . . . 14

5 Applications 15
5.1 Free evolution (No applied E.M. field) . . . . . . . . . . . . . . 15
5.2 Two-level system driven by the E.M. field . . . . . . . . . . . 17

1



1 Introduction

The approaches used in the previous chapter do not allow to take into ac-
count the interaction of the atom with its environment (collisions, sponta-
neous emission). If we are only interested in the way this interaction acts on
the dynamics of the system, the density-matrix formalism is very efficient.
It enables to combine the advantages of the quantum description and of a
phenomenological model. Indeed, the transitions induced by the classical
E.M. field are treated in the quantum formalism while the others interac-
tions are introduced in a phenomenological way by use of suitable relaxation
terms. In the specific case of a two-level system, the time-evolution of the
density-matrix is governed by the optical Bloch equations, the steady-state
solutions of which can be exactly determined. The system is equivalent to a
one-half spin in a magnetic field and can be represented geometricaly by the
Bloch-vector the evolution of which can be sketched in the Bloch-sphere.

2 Essentials of the density-matrix

2.1 Definition

The density-matrix is a representation of a linear operator called the density
operator. The density operator of a pure state is defined as:

σ̂ = |ψ⟩ ⟨ψ|

The density-matrix is obtained from the density operator by choice of a basis
in the underlying space. If |ψ⟩ is expanded in a basis |n⟩, we get:

|ψ⟩ =
∑
n

Cn |n⟩ and ⟨ψ| =
∑
n

C∗
n ⟨n|

Then, the expression of the density-matrix in the |n⟩ basis is:

σ̂ =
∑
n,m

CnC
∗
m |n⟩ ⟨m|

In practice, the terms density-matrix and density operator are often used
interchangeably.
The density-matrix elements in the |n⟩ basis are:

σ̂ij = ⟨i|
∑
n,m

CnC
∗
m |n⟩ ⟨m|j⟩ = CnC

∗
mδi,nδm,j = CiC

∗
j

2



The diagonal terms σii = ⟨i|σ̂|i⟩ = |Ci|2 are is the probability for finding the
system in the state vector |i⟩. These terms are the corresponding popula-
tions of each stationary state |n⟩ constituting the basis. The normalization
condition for the state |ψ⟩ leads to:

Tr σ̂ =
∑
n

σnn = 1

The off-diagonal terms σij = ⟨i|σ̂|i⟩ = CiC
∗
j are complex numbers that

account for interferences between |i⟩ and |j⟩ that can appear when |ψ⟩ is a
linear coherent superpositon of these states. For this reason, the off-diagonal
elements are named coherences.

One of the interests of the density-matrix is the possibility of dealing
with mixed states that cannot be described by wavefunctions, like statistical
ensembles for exemple. For an ensemble in a mixed state such that each of
the pure states |ψk⟩ occurs with probability pk, the density-matrix is defined
by:

σ̂ =
∑
k

pk |ψk⟩ ⟨ψk| =
∑
k

pkσk

.

2.2 Properties

-The mean value of an observable represented by an operator Ô is:〈
Ô
〉
= Tr

(
σ̂Ô
)

-The time evolution of the density-operator of an isolated system can be
deduced from the Schrödinger equation and is governed by the Liouville-Von
Neumann equation:

dσ̂

dt
=

1

iℏ

[
Ĥ, σ̂

]
-If the system undergoes interactions at random instants with others sys-
tems, their average effect is represented by the addition to the Liouville-Von
Neumann equation of a relaxation operator. The relaxation terms of the
populations are: {

dσii
dt

}
rel

= −(
∑
j ̸=i

Γi→j)σii +
∑
j ̸=i

Γj→iσjj

where Γij is the transition rate from |i⟩ to |j⟩.
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The relaxation terms of the coherences are:{
dσij
dt

}
rel

= −γijσij

Even if the Γj→i and γij can be evaluated if the interaction Hamiltonian
of the system with its environment is known, we will consider them to be
introduced phenomenologically.

3 Application to a two-level system - Optical Bloch

equations

3.1 Derivation of OBE

As we did in the previous chapter, we consider a two-level atom described by
the Hamiltonian:

Ĥ0 =
ℏ
2

(
+ω0 0
0 −ω0

)
with ω0 = (Eb − Ea)/ℏ. This atom interacts with a classical perdiodic

E.M. field:

Ŵab(t) = −⟨a| ˆ⃗d · E⃗(r⃗0)|b⟩ cosωt = ℏ Ω1 cosωt

The total time-dependent Hamiltonian is:

Ĥ(t) = Ĥ0 + Ŵab(t) =
ℏ
2

(
+ω0 2Ω1 cosωt

2Ω1 cosωt −ω0

)
The eigenstates are expanded on the basis of the stationnary states:

|ψ(t)⟩ = Ca(t)e
iω0t/2 |a⟩+ Cb(t)e

−iω0t/2 |b⟩

As usual, we write the cosωt with complex notation and we remove the
non-resonant terms:

Ĥ(t) = Ĥ0 + Ŵab(t) =
ℏ
2

(
+ω0 Ω1e

−iωt

Ω1e
+iωt −ω0

)
Up to this point, the notations are the ones we previously introduced.

We determine the time-evolution of the density-matrix by use of the
Liouville-Von Neumann equation:

dσ̂

dt
=

1

iℏ

[
Ĥ, σ̂

]
4



We calculate 1
iℏ σ̂Ĥ and 1

iℏĤσ̂:

1

iℏ
Ĥσ̂ =

1

2

(
−iω0 −iΩ1e

−iωt

−iΩ1e
+iωt +iω0

)
×

(
σbb σba

σab σaa

)

=
1

2

(
−iω0σbb − iΩ1σabe

−iωt −iω0σba − iΩ1σaae
−iωt

−iΩ1σbbe
+iωt + iω0σab −iΩ1σbae

+iωt + iω0σaa

)

1

iℏ
σ̂Ĥ =

(
σbb σba

σab σaa

)
× 1

2

(
−iω0 −iΩ1e

−iωt

−iΩ1e
+iωt +iω0

)

=
1

2

(
−iω0σbb − iΩ1σbae

+iωt −iΩ1σbbe
−iωt + iω0σba

−iω0σab − iΩ1σaae
+iωt −iΩ1σabe

−iωt + iω0σaa

)
Finally, we get:

d

dt

(
σbb σba

σab σaa

)
=

(
iΩ1

2
(σbae

+iωt − σabe
−iωt) iΩ1

2
(σbb − σaa)e

−iωt − iω0σba

−iΩ1

2
(σbb − σaa)e

+iωt + iω0σab −iΩ1

2
(σbae

+iωt − σabe
−iωt)

)
The time-evolution of the density-matrix is given by the following set of four
coupled differential equations, the optical Bloch-equations:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dσaa
dt

= −iΩ1

2
(σbae

iωt − σabe
−iωt)

dσbb
dt

= i
Ω1

2
(σbae

iωt − σabe
−iωt)

dσab
dt

= −iΩ1

2
(σbb − σaa)e

iωt + iω0σab

dσba
dt

= i
Ω1

2
(σbb − σaa)e

−iωt − iω0σba

The relaxation of populations and coherences is taken into account by the
addition of the relaxation operator.

d

dt



σaa

σbb

σab

σba


=



0 +Γba 0 0

0 −Γba 0 0

0 0 −γab 0

0 0 0 −γba





σaa

σbb

σab

σba


5



For convenience, we suppose that γab = γba = γ. The system is closed, the
total population is conserved:

dσaa
dt

+
dσbb
dt

= 0

Γba is the relaxation-rate of the population and γ the relaxation-rate of the
dipole. These two quantities have been introduced in the Einstein’s and
Drude-Lorentz models, respectively. One often writes:

Γba =
1

T1
, γ =

1

T2

with T1 the population lifetime, T2 is the dipole lifetime. We distinguish two
opposite situations:

• If the medium is diluted, the only coupling of the atom with its envi-
ronment is the interaction with the radiation (spontaneous emission).
Then, it can be shown that:

Γba = Γsp, γ =
Γsp

2

where Γsp is the spontaneous relaxation-rate that we have calculated
previously.

• If the medium is dense, the relaxation processes can be due to colli-
sion between atoms, interaction with phonons, etc. The relaxation is
enhanced and:

γ ≫ Γba

The relaxation of the dipole is faster than the relaxation of populations.
It is easier to blur a phase (leading to a damping of the dipole, or of the
coherence) than to modify an energy (needed to damp the population).

The system of equation becomes:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dσaa
dt

= −iΩ1

2
(σbae

iωt − σabe
−iωt) + Γba σbb

dσbb
dt

= i
Ω1

2
(σbae

iωt − σabe
−iωt)− Γba σbb

dσab
dt

= −iΩ1

2
(σbb − σaa)e

iωt + i(ω0 + iγ) σab

dσba
dt

= i
Ω1

2
(σbb − σaa)e

−iωt − i(ω0 − iγ) σba

6



3.2 Free evolution

In the absence of an external E.M. field, Ω1 = 0 and the system becomes:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dσaa
dt

= + Γba σbb

dσbb
dt

= − Γba σbb

dσab
dt

= i(ω0 + iγ) σab

dσba
dt

= −i(ω0 − iγ) σba

, the integration of which leads to

∣∣∣∣∣∣∣∣∣∣∣∣

σaa(t) = σaa(0) e
−Γbat

σbb(t) = 1− σaa(0) e
−Γbat

σab(t) = σab(0) e
iω0te−γt

σba(t) = σba(0) e
−iω0te−γt

If the system is prepared in an intial state with σbb − σaa ̸= 0, the popula-
tions remain constant and the coherences evolve periodically with the angular
frequency ω0.

3.3 Driven system

To solve this system, we remove the rapid time dependence of the σii by
setting:

σ̃ab = σab e
−iωt

σ̃ba = σba e
+iωt

σ̃aa = σaa

σ̃bb = σbb

It corresponds, as we will see further, to the rotating-frame transformation.
It consists in writing the coherence terms in the frame that is rotating at the
field frequency ω.

dσ̃aa
dt

= −iΩ1

2
(σ̃ba − σ̃ab) + Γba σ̃bb

dσ̃bb
dt

= i
Ω1

2
(σ̃ba − σ̃ab)− Γba σ̃bb

dσ̃ab
dt

e+iωt + iω σ̃ab e
+iωt = −iΩ1

2
(σ̃bb − σ̃aa) e

+iωt + i(ω0 + iγ) σ̃ab e
+iωt

dσ̃ba
dt

e−iωt − iω σ̃ab e
−iωt = i

Ω1

2
(σ̃bb − σ̃aa) e

−iωt − (iω0 − iγ) σ̃ba e
−iωt

7



The system becomes a coupled set of differential equations with constant
coefficients.

dσ̃aa
dt

= −iΩ1

2
(σ̃ba − σ̃ab) + Γba σ̃bb

dσ̃bb
dt

= i
Ω1

2
(σ̃ba − σ̃ab)− Γba σ̃bb

dσ̃ab
dt

= −iΩ1

2
(σ̃bb − σ̃aa) + i(ω0 − ω + iγ) σ̃ab

dσ̃ba
dt

= i
Ω1

2
(σ̃bb − σ̃aa)− i(ω0 − ω − iγ) σ̃ba

The system can be solved exactly in some limit cases.

3.4 Stationnary regime

Some analytical solutions can be obtained if we set the time-derivatives equal
to zero:

0 = −iΩ1

2
(σ̃ba − σ̃ab) + Γba σ̃bb

0 = i
Ω1

2
(σ̃ba − σ̃ab)− Γba σ̃bb

0 = −iΩ1

2
(σ̃bb − σ̃aa) + i(ω0 − ω + iγ) σ̃ab

0 = i
Ω1

2
(σ̃bb − σ̃aa)− i(ω0 − ω − iγ) σ̃ba

Weak excitation, oscillator strength
if the excitation is weak σ̃bb ≃ 0 and σ̃aa ≃ 1, so σ̃bb − σ̃aa ≃ − 1 and:

dσ̃ab
dt

≃ i
Ω1

2
+ i(ω0 − ω + iγ) σ̃ab

replacing Ω1 = −1

ℏ
d⃗ab · E⃗

dσ̃ab
dt

− i(ω0 − ω + iγ) σ̃ab = −i d⃗ab · E⃗
2ℏ

8



Restoring the antiresonant term that we have neglected before, we find:

σab =
d⃗ab · E⃗
2ℏ

[
e+iωt

(ω0 − ω + iγ)
+

e−iωt

(ω0 + ω + iγ)

]
=
d⃗ab · E⃗
2ℏ

[
ω0 − ω − iγ

(ω0 − ω)2 + γ2
e+iωt +

ω0 + ω − iγ

(ω0 + ω)2 + γ2)
e−iωt

]
and

σba =
d⃗ab · E⃗
2ℏ

[
e−iωt

(ω0 − ω − iγ)
+

e+iωt

(ω0 + ω − iγ)

]
=
d⃗ab · E⃗
2ℏ

[
ω0 − ω + iγ

(ω0 − ω)2 + γ2
e−iωt +

ω0 + ω + iγ

(ω0 + ω)2 + γ2)
e+iωt

]
The expectation value of the dipole operator is:〈

ˆ⃗
d
〉
= Tr

(
σ̂
ˆ⃗
d
)
= d⃗ab σab + d⃗ba σba

=
|d⃗ab|2 · E⃗

2ℏ

[
(ω0 − ω) e+iωt

(ω0 − ω)2 + γ2
+

(ω0 + ω) e−iωt

(ω0 + ω)2 + γ2
− iγ e+iωt

(ω0 − ω)2 + γ2
− iγ e−iωt

(ω0 + ω)2 + γ2
+ c.c.

]

〈
ˆ⃗
d
〉
=

|d⃗ab|2 · E⃗
ℏ

[
(ω0 − ω)

(ω0 − ω)2 + γ2
+

(ω0 + ω)

(ω0 + ω)2 + γ2

]
cos(ωt)

+
|d⃗ab|2 · E⃗

ℏ

[
γ

(ω0 − ω)2 + γ2
− γ

(ω0 + ω)2 + γ2

]
sin(ωt)

far from the resonance, when γ ≪ |ω − ω0|:〈
ˆ⃗
d
〉
≃ |d⃗ab|2 · E⃗

ℏ

[
1

ω0 − ω
+

1

ω0 + ω

]
cos(ωt) =

|d⃗ab|2 · E⃗
ℏ

2ω0

ω2
0 − ω2

cos(ωt)

〈
ˆ⃗
d
〉
= q2

|r⃗ab|2 · E⃗
ℏ

2ω0

ω2
0 − ω2

cos(ωt)

Let us compare this expression with the one that we obtained with theDrude-
Lorentz model:

p̃ (ω) =
q2

m

1

(ω2
0 − ω2 − 2iγω)

E0

p(t) =
1

2
[p̃(ω) e−iωt+p̃∗(ω) e+iωt] =

q2E0
2m

[
e−iωt

ω2
0 − ω2 − 2iγω

+
e+iωt

ω2
0 − ω2 + 2iγω

]

9



Far from the resonance:

p(t) ≃ q2E0
2m

(
e−iωt

ω2
0 − ω2

+
e+iωt

ω2
0 − ω2

)
=
q2

m

1

ω2
0 − ω2

E0 cos(ωt)

We can rewrite the dipole in the classical form:〈
d⃗
〉
= fab

q2

m

1

ω2
0 − ω2

E0 cos(ωt)

where:
fab = 2

m

ℏ
ω0|r⃗ab|2

is a dimensionless parameter called the oscillator strength of the transition.
Then, the macroscopic polarization is:

P⃗ =
N

V

q2

m

fab
ω2
0 − ω2

E0 cos(ωt) = ε0χE0 cos(ωt)

and:

χ(ω) =
N

V

q2

mε0

fab
ω2
0 − ω2

If several transitions contribute to the polarization, then we can generalize
the expression of χ

χ(ω) =
N

V

q2

mε0

∑
f

faf
ω2
fa − ω2

Fast relaxation of coherences, rate equations
In a dense medium γ ≫ Γba

dσ̃ab
dt

= −iΩ1

2
(σ̃bb − σ̃aa) + i(ω0 − ω + iγ) σ̃ab

The characteristic evolution-time of σ̃ab is γ
−1. Similarly σaa and σbb evolve

on characteristic times ≃ Γ−1
ba . If γ ≫ Γba, we can make the assumption that

σ̃aa and σ̃bb are constant at the scale of γ−1. Thanks to this simplification,
we can integrate directly:

dσ̃ab
dt

− i(ω0 − ω + iγ) σ̃ab = −iΩ1

2
(σ̃bb − σ̃aa)

dσ̃ab
dt

e−i(ω0−ω+iγ)t −i(ω0−ω+iγ) σ̃ab e−i(ω0−ω+iγ)t = −iΩ1

2
(σ̃bb−σ̃aa) e−i(ω0−ω+iγ)t

10



σ̃ab e
−i(ω0−ω+iγ)t = −iΩ1

2
(σ̃bb − σ̃aa)

∫ t

0

e−i(ω0−ω+iγ)t′dt′

σ̃ab e
−i(ω0−ω+iγ)t = −iΩ1

2
(σ̃bb − σ̃aa)

e−i(ω0−ω+iγ)t − 1

−i(ω0 − ω + iγ)

σ̃ab = −iΩ1

2
(σ̃bb − σ̃aa)

1− e+i(ω0−ω+iγ)t

−i(ω0 − ω + iγ)

When t≫ γ−1, we can neglect the damped terms and

σ̃ab = −iΩ1

2

σ̃bb − σ̃aa
γ − i(ω0 − ω)

=
Ω1

2

σ̃bb − σ̃aa
(ω0 − ω) + iγ

we replace with this expression in:

dσ̃bb
dt

= i
Ω1

2
(σ̃ba − σ̃ab)− Γba σ̃bb

dσ̃bb
dt

= i
Ω2

1

4
(σ̃bb − σ̃aa)

[
1

(ω0 − ω)− iγ
− 1

(ω0 − ω) + iγ

]
− Γba σ̃bb

= i
Ω2

1

4
(σbb − σaa)

[
i2γ

(ω0 − ω)2 + γ2

]
− Γba σ̃bb

Finally, we get:

dσ̃bb
dt

= −(σ̃bb − σ̃aa)
Ω2

1

2γ

[
γ2

(ω0 − ω)2 + γ2

]
− Γba σ̃bb

If we multiply this equation by the number of atoms per unit-volume N/V ,
we obtain the rate equation for the excited state population:

dNb

dt
= (Na −Nb)

Ω2
1

2γ

[
γ2

(ω0 − ω)2 + γ2

]
− Γba Nb

=
Ω2

1

2γ
F (ω)(Na −Nb)− Γba Nb

that is similar to the Einstein equation:

dNb

dt
= Bu (ω0)F (ω)(Na −Nb)− ANb

where we have introduced the absorption lineshape F (ω). We deduce that:

Bu(ω0) =
Ω2

1

2γ
, A = Γba and F (ω) =

γ2

(ω0 − ω)2 + γ2

11



4 Bloch vector

4.1 The two-level system seen as a spin 1/2

The Hamiltonian of a spin 1
2
S in interaction with a magnetic field B is:

ŴB·S = −γBB · S = −γB(BxSx +BySy +BzSz)

with:

Sx =
ℏ
2

(
0 1
1 0

)
, Sy =

ℏ
2

(
0 −i
i 0

)
, Sz =

ℏ
2

(
1 0
0 −1

)
.

ŴB·S = −γB
ℏ
2

(
Bz Bx − iBy

Bx + iBy −Bz

)
The Hamiltonian of a two-level system in interaction with an E.M. field is:

Ĥ = Ĥ0 + Ŵ = −ω0

(
ℏ
2

0

0 −ℏ
2

)
+ 2Ω1 cos(ωt)

(
0 ℏ

2

ℏ
2

0

)
= −ω0 Sz + 2Ω1 cos(ωt) Sx

Remark: The minus sign before Ĥ0 comes from the fact that in a classical
representation of a real spin 1/2, the spin tends to be parallel to the static
magnetic field B0. It results that, in the Bloch sphere representation, the
|+⟩ state is at the top of the sphere. In the case of the two-level system, it is
the opposite: the effective magnetic field brings the system into the ground
state |a⟩ that corresponds to the top of the Bloch sphere.

It is equivalent to the Hamiltonian of a spin 1/2 in a magnetic field

B = −2(Ω1/γB) cos(ωt) ex + (ω0/γB) ez = 2B1 cos(ωt) e⃗x −B0 e⃗z

Hamiltonians Ĥ0 and Ŵ can therefore be considered like Hamiltonians de-
scribing the interaction of a fictitious spin with magnetic fieldsB0 and 2B1 cos(ωt),
respectively parallel to Oz and Ox, and of amplitudes such as the Lar-
mor precession-frequencies of the spin around these two fields are ω0 and
2Ω1 cos(ωt). The time evolution of a spin S in a magnetic field is given by:

dS

dt
= γB S×B

12



d

dt

Sx

Sy

Sz

 = γB

Sx

Sy

Sz

×

2B1 cos(ωt)

0

−B0



= γB

 −B0Sy

2B1 cos(ωt)Sz +B0Sx

−2B1 cos(ωt)Sy

 =

 +ω0Sy

−2Ω1 cos(ωt)Sz − ω0Sx

+2Ω1 cos(ωt)Sy


4.2 Definition of the Bloch vector

The Bloch vector is defined as the expectation value of a dimensionless spin-
vector:

U = (u, v, w) =
〈
Ŝ
〉

The three components of Ŝ are the Pauli matrices

Sx =
1

2

(
0 1
1 0

)
, Sy =

1

2

(
0 −i
i 0

)
, Sz =

1

2

(
1 0
0 −1

)
.

Using the properties of the density-matrix, we find

u = Tr(σ̂ · Sx) =
1

2
(σab + σba)

v = Tr(σ̂ · Sy) =
1

2i
(σba − σab)

w = Tr(σ̂ · Sz) =
1

2
(σaa − σbb)

and:
u+ iv = σba

u− iv = σab

By use of the OBE:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dσaa
dt

= −iΩ1

2
(σba − σab) cos(ωt) + Γba (1− σaa)

dσbb
dt

= i
Ω1

2
(σba − σab) cos(ωt)− Γba σbb

dσab
dt

= −iΩ1

2
(σbb − σaa) cos(ωt) + i(ω0 + iγ) σab

dσba
dt

= i
Ω1

2
(σbb − σaa) cos(ωt)− i(ω0 − iγ) σba

13



we calculate the time-derivative of U:

d

dt

uv
w

 =

 +ω0v

−2wΩ1 cos(ωt)− ω0u

+2vΩ1 cos(ωt)


The time-evolution of the Bloch-vector is equivalent to the motion of a di-
mensionless spin interacting with an effective magnetic field. If we include
the relaxation terms:

d

dt

uv
w

 =

 +ω0v − γ u

−2wΩ1 cos(ωt)− ω0u− γ v

+2vΩ1 cos(ωt)− Γba(w − 1
2
)


4.3 Geometrical representation

A general state of a two-level system can be written:

|ψ⟩ = cos
θ

2
e−iϕ/2 |a⟩+ sin

θ

2
e+iϕ/2 |b⟩

The corresponding density-matrix is:

σ̂ =

(
|Ca|2 CaC

∗
b

CbC
∗
a |Cb|2

)
=

(
cos2 θ

2
sin θ

2
cos θ

2
e−iϕ

sin θ
2
cos θ

2
e+iϕ sin2 θ

2

)
=

(
cos2 θ

2
1
2
sin θ e−iϕ

1
2
sin θ e+iϕ sin2 θ

2

)

u =
1

2
(σab + σba) = sin

θ

2
cos

θ

2

(
e+iϕ + e−iϕ

2

)
=

1

2
sin θ cosϕ

v =
1

2i
(σba − σab) = sin

θ

2
cos

θ

2

(
e+iϕ − e−iϕ

2i

)
=

1

2
sin θ sinϕ

w =
1

2
(σaa − σbb) =

1

2

(
cos2

θ

2
− sin2 θ

2

)
=

1

2
cos θ

|U | =
√
u2 + v2 + w2 =

√
1

4
sin2 θ

(
cos2 ϕ+ sin2 ϕ

)
+

1

4
cos2 θ =

1

2

The tip of the Bloch vector spans the surface of a sphere the radius of which
is 1

2
. The angles θ and ϕ are the polar coordinates of U. The projection of

U on the vertical axis gives the population difference while the projection
in the transverse plane gives the complex representation of the coherence.
The stationnary states |a⟩ and |b⟩ correspond to the sphere poles A and B,
respectively.
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ۧ|𝑎

ۧ|𝑏

𝑢

𝑣

𝑤

𝑼

Figure 1: Sketch of the Bloch vector U describing a pure state of a two-level
system.

5 Applications

5.1 Free evolution (No applied E.M. field)

Without relaxations ∣∣∣∣∣∣∣∣
u̇ = +ω0v

v̇ = −ω0u

ẇ = 0

We solve the system by substituting v̇ = +ü/ω0:

ü+ ω2
0u = 0

v̈ + ω2
0v = 0

w = w(0)

The solutions are: ∣∣∣∣∣∣∣∣
u(t) = u(0) cos(ω0t+ α0)

v(t) = −u(0) sin(ω0t+ α0)

w(t) = w(0)

15



At t = 0, the projection of U in the Bloch-sphere are:

u =
1

2
sin θ0 cosϕ0

v =
1

2
sin θ0 sinϕ0

w =
1

2
cos θ0

We deduce that: ∣∣∣∣∣∣∣∣∣∣∣∣∣

u(t) =
1

2
sin θ0 cos(ω0t+ ϕ0)

v(t) =
1

2
sin θ0 sin(ω0t+ ϕ0 − π)

w(t) =
1

2
cos θ0

σab(t) = u(t)−iv(t) = 1

2
sin θ0 [cos(ω0t+ ϕ0) + i sin(ω0t+ ϕ0)] = σab(0)e

i(ω0t+ϕ0) = σ∗
ba(t)

The population of |a⟩ and |b⟩ remains constant but the coherences are rotat-
ing around Oz at the frequency ω0

With relaxations

∣∣∣∣∣∣∣∣∣∣
u̇ = +ω0v − γ u

v̇ = −ω0u− γ v

ẇ = −Γba(w − 1

2
)

It can be shown that:∣∣∣∣∣∣∣∣∣∣∣∣∣

u(t) =
1

2
sin θ0 cos(ω0t+ ϕ0)e

−γt

v(t) =
1

2
sin θ0 sin(ω0t+ ϕ0 − π)e−γt

w(t) =
1

2
+

1

2
(cos θ0 − 1)e−Γbat

The General solution of ẇ+Γbaw = 0 is w(t) = Ae−Γbat. A particular solution
when ẇ = 0 is w = 1/2. The constant A is determined by using the initial
condition w(0) = 1/2 cos θ0.

lim
t→+∞

w(t) = lim
t→+∞

1

2
(σaa − σbb) =

1

2

16



5.2 Two-level system driven by the E.M. field

Rotating frame transformation
U obeys the equation:

𝑥

𝑦

𝑧

𝑼 𝛀

ω

𝑋

ω𝟎−ω

Ω1

ۧ|𝑎

ۧ|𝑏

Figure 2: Precession of the Bloch vector U around the effective magentic
field Ω. Ω is constant in the rotating frame.

dU

dt
= γBU×B = U× [+ω0ez − 2Ω1 cos(ωt)ex]

Let be R′ the frame rotating around the z axis with the frequency ω. Then,
we can write: (

dU

dt

)
R
=

(
dU

dt

)
R′

+ ωez ×U

The field 2B1 cos(ωt), parallel to Ox, can be split into two fields, of the same
amplitude B1 rotating in the xOy plane at the frequency ω in the forward
and in the reverse directions. If ω ≃ ω0, the component rotating in the direct
direction accompanies the spin in its Larmor precession around B0 and can
therefore efficiently act on it, while the other component spins a too fast
compared to the spin (at the frequency - 2ω) to have a substantial effect. In
the frame OXY Z, in rotation around Oz at the frequency ω, the rotating
component that we conserve becomes a constant component B1eX .

(
dU

dt

)
R′

=

(
dU

dt

)
R
− ω ez ×U = U× [(ω0 − ω)ez − Ω1eX ]
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The components (ũ, ṽ, w̃) of U in the rotating frame R′ obey the system of
equations: ∣∣∣∣∣∣∣∣∣∣

˙̃u = (ω0 − ω) ṽ − γ ũ

˙̃v = −Ω1 w̃ − (ω0 − ω) ũ− γ ṽ

˙̃w = Ω1 ṽ − Γba (w̃ − 1

2
)

The same set of equations can be obtained from:

ũ =
1

2
(σ̃ab + σ̃ba)

ṽ =
1

2i
(σ̃ba − σ̃ab)

w̃ =
1

2
(σ̃aa − σ̃bb)

By analogy with a classical field, we can write:

dŨ

dt
= Ω× Ũ =

Ωx

Ωy

Ωz

×

 ũṽ
w̃

 =

Ωyw̃ − Ωzṽ
Ωzũ− Ωxw̃
Ωxṽ − Ωyũ


we deduce that

Ω =

 Ω1

0

ω0 − ω


The Bloch vector U is precessing around the effective magnetic field Ω1 with
the frequency Ω =

√
Ω2

1 + (ω0 − ω)2. Ω is in the (X,Z) plane of the rotating
frame and α is the angle between Ω and Oz with

sinα =
Ω1

Ω
and cosα =

OH

1/2

During the precession, the projection of U oscillates around w̃0 between
w̃0 − δw̃ and w̃0 + δw̃ at the frequency Ω.

w̃(t) = w0 + δw̃ cos(Ωt)

This expression is compatible with an initial condition for which the system
is in its ground state and

w̃(0) =
1

2
= w0 + δw̃
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𝑧

𝑼

𝛀

α

𝑋

ω𝟎−ω

Ω1O

ۧ|𝑎

w0

w0+ δw

w0− δw
H

Figure 3: Geometrical determination of w̃(t).

w0 is the projection of OH on Oz so, consequently:

w0 =
1

2
cos2 α

and

δw̃ =
1

2
− 1

2
cos2 α =

1

2
sin2 α

Finally, we can write the time-evolution of w̃:

w̃(t) =
1

2

(
cos2 α + sin2 α cos(Ωt)

)
=

1

2
(σ̃aa − σ̃bb) =

1

2
(1− 2σ̃bb)

σ̃bb =
1

2

(
1− cos2 α− sin2 α cos(Ωt)

)
=

1

2
sin2 α (1− cos(Ωt))

σ̃bb =

(
Ω1

Ω

)2

sin2

(
Ω

2
t

)
=

Ω2
1

Ω2
1 + (ω0 − ω)2

sin2

(√
Ω2

1 + (ω0 − ω)2
t

2

)

Resonance
When ω = ω0, the E.M. field is resonant with the atomic transition and

Ω =

Ω1

0

0


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𝑦

𝑧

𝑼

𝛀

ω
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ۧ|𝑎

ۧ|𝑏

𝑌

Figure 4: When the two-level system is driven by a resonant E.M. field,
the Bloch vector U performs a precession in the vertical plane (Y, Z) of the
rotating frame.

The time-evolution of U is given by∣∣∣∣∣∣∣∣∣
˙̃u = 0

˙̃v = −Ω1 w̃

˙̃w = Ω1 ṽ

It is easy to find that ∣∣∣∣∣∣∣∣∣∣∣

ũ = 0

ṽ = −1

2
sinΩ1t

w̃ =
1

2
cosΩ1t

Ω is along the OX axis of the rotating frame and U precesses around Ω, in
the (Y, Z) plane, at the Rabi-frequency Ω1. The population of the excited
state is

σ̃bb = sin2

(
Ω1

2
t

)
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Chapter 4: Optical transition in atoms: the
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1 Introduction

In previous chapters, we have seen that the interaction between an atom and
an E.M. field is described, in the semi-classical model, by the electric-dipole
operator:

ŴDE = −d̂ · E0 cosωt

According to the time-dependent perturbation theory, the probability to per-
form an optical transition from an initial state |i⟩ to the final state |f⟩, under
the influence of this operator, is:

Pif =
d2fi
ℏ2

· |E(r0)|
2

4

∣∣∣∣1− ei(ωfi+ω)t

ωfi + ω
+

1− ei(ωfi−ω)t

ωfi − ω

∣∣∣∣2
The ω-dependent term has been studied in previous chapters. It takes sub-
stancial values when the frequency of the field is close to the Bohr-frequency
of the atomic transition. The transition probability is large when:

ω = ±ωfi

However, this condition is necessary but not sufficient.To occur, a transition
between |i⟩ and |f⟩ must satisfy:

dfi = q ⟨f |r|i⟩ ≠ 0

It is the role of the selection rules for electric– dipole transitions to specify
the transitions that may occur between the states of interest. They are based
on an examination of the transition dipole moment. If the latter is different
fom zero, the transition is said to be allowed. In the opposite situation, it is
forbidden.

The value of ⟨f |r|i⟩ depends on the symetries of the wavefunctions asso-
ciated with |i⟩ and |f⟩. A general case of forbidden transition is when the
wavefunctions ψi(r) and ψf (r), associated with |i⟩ and |f⟩, have same parity.
It involves that their product is even and:

⟨f |r|i⟩ =
∫
ψf (r)

∗ψi(r)d
3r = 0

A transition can only occur between states with different parities and must
conserve some physical quantities that characterize |i⟩ and |f⟩(such as energy,
orbital momentum, spin...) to insure the matrix element of r̂ to be non-
zero.. The optical selection rules express these conservation laws in the
form of mathematical relations between the values of the quantum numbers
characterizing the initial state and the values of the equivalent quantum
numbers associated with the final state,
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2 Eigenstates and eigenfunctions

The eigenstates of the hydrogen atom are characterized by three quantum
numbers (the electron-spin will be considered later): n, ℓ and m.

• n is the principal quantum number. It is an integer different from 0
and is associated with the energy eigenvalues:

En = −E1

n2
with E1 = 13, 6 eV

• ℓ is the azimuthal quantum number. It is the angular momentum in
unit of ℏ.

• m is the magnetic quantum number. It is the projection, in unit of ℏ,
of ℓ on an axis of quantization.

The wavefunction is the product of a radial part by an angular part:

ψn,ℓ,m = Rn,ℓ Y
m
ℓ (θ, φ)

Y m
ℓ (θ, φ) is a spherical harmonic and is eigenstate of the anfugular momen-

tum operator:
L̂2Y m

ℓ (θ, φ) = ℓ(ℓ+ 1)ℏ2 Y m
ℓ (θ, φ)

and of its projection along a quantization axis:

L̂zY
m
ℓ (θ, φ) = mℏ Y m

ℓ (θ, φ)

The first spherical harmonics are

Y 0
0 =

1√
4π

Y 0
1 =

√
3

4π
cos θ

Y ±1
1 = ∓

√
3

8π
sin θ e±iφ

These expression are useful to express cos θ and sin θ eiφ as a function of Y m
ℓ .
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3 Optical Transitions

3.1 Linearly polarized light

We consider a hydrogen atom located at r = 0 submitted to a light linearly-
polarized along the z axis:

E(0, t) = E0 cosωt ez
The interaction with the E.M.field is described by the electric-dipole operator:

ŴDE = −qẑE0 cosωt = ŴDE = −qẑE0
eiωt + e−iωt

2

|i⟩ = |ni, ℓi,mi⟩ and |f⟩ = |nf , ℓf ,mf⟩ being the initial and final states,
respectively, the matrix element associated with the corresponding transition
is:

⟨f |ŴDE|i⟩ = −qE0
2
⟨nf , ℓf ,mf |ẑ|ni, ℓi,mi⟩ eiωt

− q
E0
2
⟨nf , ℓf ,mf |ẑ|ni, ℓi,mi⟩ e−iωt

If we agree to choose ω ≥ 0, the first term in the right-hand side is resonant for
ωfi < 0 (stimulated emission) while the second term is resonant for ωfi > 0
(absorption).

⟨f |ŴDE|i⟩ ∝ −qE0
∫
r2 sin θdr dθ dφzR∗

nf ,ℓf
(r)Rni,ℓi(r)Y

nf∗
ℓf

(θ, φ)Y ni
ℓi
(θ, φ)

In spherical coordinates, the expression of z is:

z = r cos θ

and cos θ can be written as a function of the spherical harmonics:

z = r cos θ = r

√
4π

3
Y 0
1 (θ, φ)

⟨f |ŴDE|i⟩ ∝ −qE0

√
4π

3

∫
R∗

nf ,ℓf
(r)Rni,ℓi (r) r

3dr×∫
sin θdθdφ Y

mf∗
ℓf

(θ, φ)Y 0
1 (θ, φ)Y mi

ℓi
(θ, φ)

It can be shown that the integral is non-zero when:{
ℓf = ℓi ± 1

mf = mi
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Example
The initial state is |n = 2, ℓ = 1,m⟩

Figure 1: Optical selection rules between the states |2, 1,m⟩ and |2, 2,m⟩ of
the hydrogen atom for a linearly-polarized light.

3.2 Circularly polarized light

We consider a light the electric field of which is:

E(0, t) = E0√
2
[cosωt ex + sinωt ey]

This field is rotating at the angular frequency ω in the anticlockwise direction
around the z axis. The electric dipole operator of a σ+- polarized light is

ŴDE = q
E0√
2
[x̂ cosωt+ ŷ sinωt] = q

E0√
2

[
x̂
eiωt + e−iωt

2
+ ŷ

eiωt − e−iωt

2i

]
= q

E0√
2

[
(x̂− iŷ)

e

2

iωt

+ (x̂+ iŷ)
e

2

−iωt
]
= Ŵ+ eiωt + Ŵ− e−iωt

If we agree to choose ω ≥ 0, the first term in the bracket is resonant for
ωfi < 0 (stimulated emission) while the second term is resonant for ωfi > 0
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(absorption).

⟨f |Ŵ+|i⟩ ∝ −q E0√
2
⟨nf , ℓf ,mf |x̂+ iŷ|ni, ℓi,mi⟩

=

∫
r2 sin θdrdθdφR∗

nf ,ℓf
(r)Y

mf∗
ℓf

(θ, φ) (x̂+ iŷ)Rni,ℓi (r)Y
mi
ℓi

(θ, φ)

In spherical coordinates:

x̂+ iŷ = r̂ sin θ cosφ+ ir̂ sin θ sinφ = r̂ sin θ eiφ

By use of:

Y ±1
1 = ∓

√
3

8π
sin θ e±iφ

we express the operator as:

x̂+ iŷ = −r̂
√

8π

3
Y 1
1 (θ, φ)

and

⟨f |Ŵ+|i⟩ =
∫
R∗

nf ,ℓf
(r)Rni,ℓi r

3dr

×
∫
Y

mf∗
ℓf

(θ, φ)Y 1
1 (r)Y mi

ℓi
(θ, φ) sin θdθdφ

It can be shown that the integral is non-zero when:{
ℓf = ℓi ± 1

mf = mi + 1

For a σ− polarized light: {
ℓf = ℓi ± 1

mf = mi − 1

Normal Zeeman effet
The application of an external static magnetic field B0 along the quantization
axis is described by the Zeeman Hamiltonian:

ĤZ = −γeℓzB0
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Figure 2: Optical selection rules between the states |2, 1,m⟩ and |2, 2,m⟩ of
the hydrogen atom for a circularly-polarized light.

The first-order correction to the energy of the mℓ state of the ℓ = 1 level is
therefore:

⟨ℓ,mℓ|ĤZ |ℓ,mℓ⟩ = −γemlℏB0 = µBmℓB0

where µB is the Bohr magneton1.
We have already seen that transitions with different values of ∆mℓ corre-

spond to different polarization of electromagnetic radiation. In the present
case, an observer perpendicular to the magnetic field sees that the outer lines
of the trio (those corresponding to ∆mℓ = ±1 are circularly polarized in op-
posite senses. These lines are called the σ−lines. The central line (which is
due to ∆mℓ = 0) is linearly polarized parallel to the applied field. It is called
the π−line.

4 Fine structure

4.1 Spin-orbit coupling

The electron moves at a velocity v in the electrostatic field E of the proton.
Special relativity indicates that the electron undergoes a magnetic field in its

1For the electron γe = q/2m < 0 and µB>0
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Figure 3: The splitting of energy levels of an atom in the normal Zeeman
effect, and the splitting of the transitions into three groups of coincident lines.

rest frame:

B = − 1

c2
v × E ∝ p× r = L

The electron possesses an intrinsic magnetic moment Ms = q S
me

that inter-
acts with the field B.

The corresponding interaction energy is written

Ŵ = −Ms ·B ∝ L · S

It can be shown that the spin-orbit operator takes the form:

Ĥso = ξ(r)L · S

The spin orbit interaction modifies the previous energy spectrum by lifting
some of the degeneracy of the states relatively to the orbital momentum.
The wavefunctions that diagonalize Ĥ0 + Ĥso are the eigenstate of the total
angular momentum J = L + S. The eigenvalues j of Ĵ are integer numbers
ranging from |ℓ− s| to ℓ+ s. The projection of Ĵ along the quantization axis
is calledmj. For each eigenvalue j of ĵ, mj is an integer such as −j ≤ mj ≤ j.

|ℓ− s| ≤ j ≤ ℓ+ s

−j ≤ mj ≤ j
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Each level is characterized by a spectroscopic term:2s+1{l}j where l is a letter
corresponding to the value of ℓ (s,p,d...) and 2s + 1 is the multiplicity. For
example, the four-fold degenerate |ℓ = 1, s = 1/2⟩ state of the hydrogen atom
is split into 2p3/2 and 2p1/2.

j = 3/2

j = 1/2

ℓ = 1; s = 1/2
[6]

[4]

[2]

mj :

±3/2

±1/2

mj :

±1/2

1/3 ΔSO

2/3 ΔSO

Figure 4: The splitting of the states of a p-electron by spin–orbit coupling.

j = 3/2

j = 1/2

p

s

σ+

σ+

σ+

σ+

σ+

σ+

mj = -3/2 mj = -1/2 mj = 1/2 mj = 3/2

mj = -1/2 mj = 1/2

s = -1/2 s = +1/2

Figure 5: Optical selection rules for a circularly-polarized light.

Regarding the order of magnitude of ∆SO, for a hydrogen 2p-electron the
splitting is ∆SO ≃ 45.10−6 eV. In condensed matter, the splitting due to the
spin-orbit interaction can reach several hundreds of meV.
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j = 3/2

j = 1/2

p

s

π

mj = -3/2 mj = -1/2 mj = 1/2 mj = 3/2

mj = -1/2 mj = 1/2

s = -1/2 s = +1/2

π π π

Figure 6: Optical selection rules for a linearly-polarized light.

4.2 Anomalous Zeeman effect

A magnetic field B0 along the quantization axis Oz lifts the state degen-
eracy according to the eigenvelues of the total angular momentum. The
corresponding Zeeman Hamiltonian is written:

Ĥz = ω0(L̂z + 2Ŝz)

where ω0 is the Larmor frequency ω0 = −q/mB0. The Zeeman Hamiltonian
does not mix states with different angular momentum j, it lifts the energy
degeneracy between the different values of mj within a subspace with a given
j.

Remark
Note that, because the perturbing Hamiltonian does not contain any spin
operators, the spin quantum number ms cannot change during a transition.
Hence, we have the additional selection rule that
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Weak field

HSO >>   HZ

C. Cohen-Tannoudji, B. Diu, F. Laloë, “Quantum mechanics”

σ+ σ+ σ+

σ- σ- σ-

Figure 7: Zeeman effect on the levels n = 1 and n fine structure of the hy-
drogen atom Optical selection rules between the states |2, 1,m⟩ and |2, 2,m⟩
of the hydrogen atom for a circularly-polarized light.
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Chapter 5: Optical transition in diatomic
molecules
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We consider the case of the simplest molecule ever, the H+
2 molecule. It

is constituted of one electron and two protons.

1 Eigenstates

1.1 Hamiltonian

The full Hamiltonian is

Ĥ0 = − ℏ2

2me

∇2
e︸ ︷︷ ︸

electron kinetic energy

− ℏ2

2M1

∇2
1 −

ℏ2

2M2

∇2
2︸ ︷︷ ︸

Nuclei kinetic energy

+ V (r, R1, R2)︸ ︷︷ ︸
Coulomb potentiel

with

V (r, R1, R2) = − q

4πε0

[
1

(r −R1)
+

1

(r −R2)
+

1

(R2 −R1)

]
= − q

4πε0

[
1

r1
+

1

r2
+

1

R

]
We do the Born-Oppenheimer approximation: because of the large mass dif-
ference between the electron and the proton, the timescale associated with
the electron motion is much smaller than the one related to the motion of
protons. The electronic wavefunction is able to ”follow” continuously the
nuclear motion and changes in the internuclear distance do not cause elec-
tronic transitions. The nuclear position act only as a parameter that slightly
modifies the electronic wavefuntion.

The electronic and nuclear motions are decoupled by writing

ψ(r,R1,R2) = ϕ(r,R1,R2)ξ(R1,R2)

and we neglect the derivatives of ϕ relatively to R1 and R2:

− ℏ2

2Mj

∇2
jϕξ = − ℏ2

2Mj

[
ϕ∇2

jξ + ξ∇2
jϕ+ 2∇jϕ∇jξ

]
≃ − ℏ2

2Mj

ϕ∇2
jξ

We subsitute ψ in the Schrödinger equation:

Ĥ0ϕξ = Eϕξ

2



Eϕξ =

[
− ℏ2

2me

∇2
eϕ+ V (r, R1, R2)ϕ

]
ξ − ϕ

∑
j

ℏ2

2Mj

∇2
jξ

= Ee(R)ϕξ − ϕ
∑
j

ℏ2

2Mj

∇2
jξ

ξ is solution of: [
−
∑
j

ℏ2

2Mj

∇2
j + U(R)

]
ξ = Eξ

where R = |R2 − R1| and U(R) = Ee(R) is the solution of the electronic
equation and plays the role of a potential energy that depends only of the
internuclear distance.

1.2 Nuclear motion

The Hamiltonian of the nuclear motion is

ĤN = − ℏ2

2M1

∇2
1 −

ℏ2

2M2

∇2
2 + U(R)

We express this operator in the frame of the center of mass G by setting:

R = R2 −R1

RG = (M1R1 +M2R2)/(M1 +M2)

Rj = RG +R Mj/(M1 +M2)

ĤN becomes

ĤN = − ℏ2

2M
∇2

RG
− ℏ2

2µ
∇2

R + U(R)

The problem is turned into the study of a fictitious particle of reduced mass
µ =M−1

1 +M−1
2 [

− ℏ2

2µ
∇2

R + U(R)

]
ξ = Eξ

In the vicinity of its minimum, U(R) can be expanded using a Taylor series:

U(R) = U(R0) +
1

2

(
d2U

dR2

)
R0

(R−R0)
2

Finally, we have to solve the Schrödinger equation of a a particle in a quadratic
potential : [

− ℏ2

2µ
∇2

R +
1

2
µω2

0(R−R0)
2 − |U(R0)|

]
ξ = Eξ
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For the sake of convenience, we set U(R0) = 0. The Laplacian is:

− ℏ2

2µ
∇R = − ℏ2

2µ

1

R

∂2

∂R2
R +

L̂2

2µR2

The Hamiltonian becomes

Ĥ = − ℏ2

2µ

1

R

∂2

∂R2
R +

L̂2

2µR2
+

1

2
µω2

0(R−R0)
2

We look form the wavefunction in the form:

ξν,ℓ,mℓ
(R, θ, φ) =

1

R
χν(R) Y

mℓ
ℓ (θ, φ)

we substitute in the Schrödinger equation[
− ℏ2

2µ
∇R + V (R)

]
ξν,ℓ,mℓ

(R, θ, φ) = − ℏ2

2µ

1

R

∂2

∂R2
χν(R) Y

mℓ
ℓ (θ, φ)

+

[
ℏ2ℓ(ℓ+ 1)

2µR2
+ V (R)

]
1

R
χν(R) Y

mℓ
ℓ (θ, φ) = E

1

R
χν(R) Y

mℓ
ℓ (θ, φ)

where we used
L̂2Y m

ℓ (θ, φ) = ℓ(ℓ+ 1)ℏ2 Y m
ℓ (θ, φ)

By dividing both sides by 1
R
Y mℓ
ℓ , we get[

− ℏ2

2µ

∂2

∂R2
+

ℏ2ℓ(ℓ+ 1)

2µR2
+ V (R)

]
χν,ℓ(R) = Eν,ℓ χν(R), with V (R) =

1

2
µω2

0(R−R0)
2−|U(R0)|

For the sake of convenience, we set U(R0) = 0.[
− ℏ2

2µ

∂2

∂R2
+

ℏ2ℓ(ℓ+ 1)

2µR2
+

1

2
µω2

0(R−R0)
2

]
χν(R) = Eν,ℓ χν(R)

Assuming
ℏ2ℓ(ℓ+ 1)

2µR2
≃ ℏ2ℓ(ℓ+ 1)

2µR2
0

we get[
− ℏ2

2µ

∂2

∂R2
+

1

2
µω2

0(R−R0)
2

]
χν(R) =

[
Eν,ℓ −

ℏ2ℓ(ℓ+ 1)

2µR2
0

]
χν(R)

ℏω0(ν + 1/2) = Eν,ℓ −
ℏ2ℓ(ℓ+ 1)

2µR2
0
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Eν,ℓ = ℏω0(ν + 1/2) +
ℏ2ℓ(ℓ+ 1)

2µR2
0

χν(R) is solution of the one-dimensional harmonic oscillator:

χν(R) = NνHν(u)e
−u2/2

where H is a Hermite polynomial, u = (R−R0)/α and α = (ℏ/µω0)
1/2.

Properties of the Hermite polynomials

1. Hν(u) is solution of H ′′
ν − 2uH ′

ν + 2νHν

2. Hν+1 = 2uHν − 2νHν−1 (recursivity).

3.
∫ +∞
−∞ HνHν′e

−u2
du = δν,ν′ (orthogonality).

4.
∫ +∞
−∞ H2

νe
−u2

du = 2ν
√
πν!

n = 0

n = 1

R

U (R)

ℓ = 0
ℓ = 1
ℓ = 2

ℓ = 0
ℓ = 1
ℓ = 2

Figure 1: Eigenstate of a diatomic molecule in the electronic groundstate.
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2 Selection rules

2.1 Optical transitions

Electronic transition

Vibration-rotation

transition
R

U (R)

Figure 2: Possible optical transitions from the groundstate of a diatomic
molecule.

2.2 Vibration-rotation transitions

The dipole moment is directed along the straight line joining the two nuclei.
It can be written as an expansion in powers of R

d(R) = d0 + d1(R−R0)

For a homonuclear molecule d(R) = 0.
Considering that:

ξν,ℓ,mℓ
(R, θ, φ) =

1

R
χν(R) Y

mℓ
ℓ (θ, φ)

and

cos θ =

√
4π

3
Y 0
1
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We can evaluate the matrix element of the dipole-moment operator

⟨νf , ℓf ,mℓ,f |d(R) cos θ|νi, ℓi,mℓ,i⟩ =
√

4π

3

∫ +∞

0

χ∗
νf
(R)d(R)χνi(R)dR

×
∫
Y

mf∗
ℓf

(θ, φ)Y 0
1 (r)Y mi

ℓi
(θ, φ) sin θdθdφ

The angular part is different from zero when ℓf = ℓi ± 1. Concerning the
radial part

Iνi,νf =

∫ +∞

0

χ∗
νf
(R)d(R)χνi(R) =

∫ +∞

−∞
χ∗
νf
(R)d(R)dRχνi(R)

because χνi(R) = 0 when R < 0.

Iνi,νf = d0

∫ +∞

−∞
χ∗
νf
(R)χνi(R)dR + d1

∫ +∞

−∞
χ∗
νf
(R) (R−R0) χνi(R)dR

= αd0NνfNνi

∫ +∞

−∞
H∗

νf
(u)Hνi(u)e

−u2

du+ α2d1NνfNνi

∫ +∞

−∞
H∗

νf
(u)Hνi(u)ue

−u2

du

= αd0NνfNνiδνf ,νi + α2d1NνfNνi

∫ +∞

−∞
H∗

νf
(u)Hνi(u)ue

−u2

du

Using the recursion relation Hν+1 = 2uHν − 2νHν−1, we express:∫ +∞

−∞
H∗

νf
(u)Hνi(u)u e

−u2

du =

∫ +∞

−∞
H∗

νf
(u)Hνi+1(u)e

−u2

du

+ νi

∫ +∞

−∞
H∗

νf
(u)Hνi−1(u)e

−u2

du = δνf ,νi+1 + νiδνf ,νi−1

Finally

Iνi,νf = αd0NνfNνiδνf ,νi + α2d1NνfNνi

[
1

2
δνf ,νi+1 + νδνf ,νi−1

]
⟨νf , ℓf ,mℓ,f |d(R) cos θ|νi, ℓi,mℓ,i⟩ ≠ 0 if{

ℓf = ℓi ± 1

νf = νi − 1, νi + 1
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Δℓ = ± 1

Δn = ± 1

ℓ = 0
ℓ = 1

ℓ = 2

ℓ = 3

ν = 1

ν = 0

ℓ = 0
ℓ = 1

ℓ = 2

ℓ = 3

Figure 3: Sketch of the optical selection rules for vibration-rotation transition
a diatomic molecule.

Form of the spectrum
Let us consider the possible transitions between an initial state

E0,ℓi =
1

2
ℏω0 +

ℏ2

2µR2
0

ℓi(ℓi + 1)

and a final state

E1,ℓf =
3

2
ℏω0 +

ℏ2

2µR2
0

ℓf (ℓf + 1)

with ∆ℓ = ±1.

First case ℓf = ℓi + 1

E1,ℓf =
3

2
ℏω0 +

ℏ2

2µR2
0

(ℓi + 1)(ℓi + 2)

and

E1,ℓf − E0,ℓi = ℏω0 +
ℏ2

µR2
0

(ℓi + 1)

This condition gives rise to series of regularly spaced absorption lines, which
energies are larger than ℏω0, and that consitute the ”R-Branch”.
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Second case ℓi = ℓf + 1

E1,ℓf =
3

2
ℏω0 +

ℏ2

2µR2
0

(ℓf + 1)(ℓf + 2)

and

E1,ℓf − E0,ℓi = ℏω0 −
ℏ2

µR2
0

(ℓi + 1)

This condition gives rise to series of regularly spaced absorption lines, which
energies are smaller than ℏω0, and that consitute the ”Q-Branch”.

http://hyperphysics.phy-astr.gsu.edu

C. Cohen-Tannoudji, B. Diu, F. Laloë, “Quantum mechanics”

Figure 4: Theoretical and experimental absorption spectra of vibration-
rotation transition. The experimantal spectrum is related to the HBr
molecule.

2.3 Electronic transitions

Because nuclear masses are so much larger than the mass of an electron,
an electronic transition occurs within a stationary nuclear framework and
the nuclear wavefunction remains unchanged during an electronic transition.
Classically, the transition occurs when the internuclear separation is equal
to the equilibrium bond length R0 of the lower electronic state, when the
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nuclei are stationary, and that internuclear separation and state of motion
are preserved during the transition. As a result, the transition terminates
where a vertical line cuts through the upper molecular potential energy curve.
Then, the molecule relaxes to its new equilibrium position that correspond to
the nuclear groundstate ν = 0 of the excited electronic-state. This relaxation
occurs by emitting phonons.

https://fr.wikipedia.org/wiki/Principe_Franck-Condon

Figure 5: Franck–Condon principle energy diagram. Since electronic tran-
sitions are very fast compared with nuclear motions, vibrational levels are
favored when they correspond to a minimal change in the nuclear coordi-
nates. The potential wells are shown favoring transitions between ν = 0 and
ν = 2.

In a molecule, the electric dipole moment operator depends on the loca-
tions and charges of the electrons ri, and q, and the locations and charges of
the nuclei, which we denote RI and ZIq, respectively:

d̂ = −q
∑
i

ri + q
∑
I

ZIRI = d̂e(r) + d̂N(R)

If we assume the electric-field to be z−polarized, the projection of d̂ on Oz
is

d̂ cos θ =

√
4π

3
Y 0
1 (θ, φ)
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The matrix element of d̂ between initial and final states is:

⟨Ef , ℓf , νf |d̂|Ei, ℓf , νi⟩ =∫ ∗
Y

mf

ℓf
(θ, φ) Y 0

1 (θ, φ) Y
mi
ℓi

(θ, φ)dΩ

∫
χ∗
νf
(R)

[ ∫
ϕ∗
Ef
(r, R)d̂e(r)ϕEi

(r, R)d3r
]
χνi(R)dR

+

∫ ∗
Y

mf

ℓf
(θ, φ) Y 0

1 (θ, φ) Y
mi
ℓi

(θ, φ)dΩ

∫
χ∗
νf
(R)d̂N(R)χνi(R)

[ ∫
ϕ∗
Ef
(r, R)ϕEi

(r, R)d3r︸ ︷︷ ︸
=0

]
dR

= δℓf ,ℓi±1 δmf ,mi

∫
χ∗
νf
(R)dEi,Ef

(R)χνi(R)dR ≃ δℓf−1,0dEi,Ef

∫
χ∗
νf
(R)χνi(R)dR

The integral
〈
ϕEf

∣∣ϕEi

〉
over the electron coordinates is zero because the elec-

tronic states are orthogonal to one another for each selected value of R.
Therefore, if we assume the dipole moment to be independent of the nuclear
position, the overall electric dipole transition moment is

⟨Ef , ℓf , νf |d̂|Ei, ℓf , νi⟩ = δℓf ,ℓi±1 δmf ,mi
dEi,Ef

∫
χ∗
νf
(R)χνi(R)dR

The probabilitity transition from |Ei, ℓf , νi⟩ to |Ei, ℓf , νi⟩ is proportionnal to∣∣∣ ⟨Ef , ℓf , νf |d̂|Ei, ℓf , νi⟩
∣∣∣2 = δℓf ,ℓi±1 δmf ,mi

∣∣dEi,Ef

∣∣2 |I(νi, νf )|2

where

I(νi, νf ) =

∫
χ∗
νf
(R)χνi(R)dR

is the Franck–Condon factor.

Overlap integral between vibronic-states
It can be shown that, if only the state νi = 0 is populated, then∣∣∣∣∫ χ∗

νf
(R)χ0(R)dR

∣∣∣∣2 = e−SS
ν

ν!
≡ F ν

0

S is the Huang-Rhys factor: it represents the strength of coupling to the nu-
clear degrees of freedom. The Huang-Rhys factor is related to the equilibrium
position offset ∆R0 by

S = µ
ω0

ℏ
∆R2

0

Hence, if ∆R0 = 0, I(νi, νf ) = δνf ,νi : the |χν⟩ in the ground and excited

states are identical and, because of their orthogonality,
〈
χνf

∣∣χνi

〉
= 0 when

νf ̸= νi.

11



When ∆R0 ̸= 0, transitions between states with different values of νi
and νf become allowed. Significant values of the overlap integral I(νi, νf )
are found for a progression of vibrational states νf , so transitions occur with
varying probabilities to all of them. Thus, a progression of transitions, a series
of vibrational transitions, is observed in the electronic spectrum (see figure 6).
The larger ∆R0, the larger the number of allowed transitions. The relative
intensities of the corresponding spectral lines are proportional to the square
of the electric dipole transition moments and hence to the Franck–Condon
factors, |I(νi, νf )|2. Increasing ∆R0 also implies that |I(νi, νf )|2 takes it
highest value for larger νf .

R0

R’0

ΔR0

Figure 6: Absorption between vibronic states. The expected absorption and
emission spectra are a series of lines regularly spaced at separation ℏω0 with
relative intensities according to F 0

ν .

Relaxation to the ground state - Stokes shift
During the absorption process, the internuclear equilibrium distance is pre-
served. However, after the photon absorption, the molecule relaxes non-
radiatively to the state ν ′ = 0 in the excited electronic state with the new
equilibrium distance R′

0. The excess energy is lost by emetting one or several
vibration quanta ℏω0.The radiative sponaneous emission occurs from ν ′ = 0

12



and the selection rules for emission are the same as for absorption. Thus, the
nature of vibronic states implies a systematic energy shift called Stokes shift
between emission and absorption (7).

ΔR0 ΔR0

Estokes = 2 ħω Estokes = 6 ħω

ν = 0

ν = 1

ν = 2

ν = 3

ν' = 0

ν' = 1

ν' = 2

ν' = 3

ν = 0

ν = 1

ν = 2

ν = 3

ν' = 0

ν' = 1

ν' = 2

ν' = 3

Estokes = 2 ħω Estokes = 6 ħω

Figure 7: Increase of the Stokes shift EStokes with ∆R0 .

The larger the Huang-Rhys factor, the larger the Stokes-shift.
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S = 0.5 S = 1

S = 2

Figure 8: Calculated absorption(blue) and emission(red) spectra of a di-
atomic molecule for different values of its Huang-Rhys factor S.
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Appendix

We look form the wavefunction in the form:

ξν,ℓ,mℓ
(R, θ, φ) =

1

R
χν(R) Y

mℓ
ℓ (θ, φ)

by using
L̂2Y m

ℓ (θ, φ) = ℓ(ℓ+ 1)ℏ2 Y m
ℓ (θ, φ)

[
− ℏ2

2µ
∇R + V (R)

]
ξν,ℓ,mℓ

(R, θ, φ) = − ℏ2

2µ

1

R

∂2

∂R2
χν(R) Y

mℓ
ℓ (θ, φ)

+

[
ℏ2ℓ(ℓ+ 1)

2µR2
+ V (R)

]
1

R
χν(R) Y

mℓ
ℓ (θ, φ) = E

1

R
χν(R) Y

mℓ
ℓ (θ, φ)

by dividing both sides by 1
R
Y mℓ
ℓ , we get[

− ℏ2

2µ

∂2

∂R2
+

ℏ2ℓ(ℓ+ 1)

2µR2
+ V (R)

]
χν,ℓ(R) = Eν,ℓ χν(R)

with

V (R) =
1

2
µω2

0(R−R0)
2 − |U(R0)|

For the sake of convenience, we set U(R0) = 0.[
− ℏ2

2µ

∂2

∂R2
+

ℏ2ℓ(ℓ+ 1)

2µR2
+

1

2
µω2

0R
2

]
χν(R) = Eν,ℓ χν(R)

we assume that ℏ2ℓ(ℓ+1)
2µR2 ≃ ℏ2ℓ(ℓ+1)

2µR2
0[

− ℏ2

2µ

∂2

∂R2
+

1

2
µω2

0R
2

]
χν(R) =

[
Eν,ℓ −

ℏ2ℓ(ℓ+ 1)

2µR2
0

]
χν(R)

ℏω0(ν + 1/2) = Eν,ℓ −
ℏ2ℓ(ℓ+ 1)

2µR2
0

Eν,ℓ = ℏω0(ν + 1/2) +
ℏ2ℓ(ℓ+ 1)

2µR2
0

χν(R) is solution of the one-dimensional harmonic oscillator:

χν(R) = NνHν(u)e
−u2/2

where H is a Hermite polynomial, u = (R−R0)/α and α = (ℏ/µω0)
1/2.
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1 Electronic states and band structure

1.1 Crystal structure

Condensed matter consists in the agregation of atoms with a density of a few
1022 cm−3. Crystalline materials, as semiconductor compounds are, see their
atoms (or molecules) periodically arranged in a higly ordered microscopic
stucture. A crystal is built up by repetitive translation of its unit cell along
its principal axes. It is characterized by the symetry-operations through
which it remains identical. The number of crystalline structure in nature is
so large that it consitute the topic of crystallography. However, the most
studied semiconductors present simple arrangement such as diamond, zinc-
blend (cubic) or wurtzite (hexagonal) structures.

[6] [6] [6] [6]

[2] [2] [2] [2]

p2 p2 p2 p2

s2 s2 s2 s2

[6N]

[6N]

[6N]

[6N]

[2N]

[2N]

[2N]

[2N]
6N

2N

2N

2N

4N

Saturated HOMO orbital

= insulator

Unsaturated HOMO orbital

= metal

Interatomic distance

Figure 1: Construction of the crystal orbitals starting from the s and p
orbitals of an atom with s2p2 electronic configuration.

1.2 Electronic states

The electronic structure of solids can be regarded as an extension of molecular
orbital theory to aggregates consisting of a virtually infinite number of atoms.
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The simplest example of the use of LCAO is illustrated by the calculation of
the electronic states of a homonuclear diatomic molecule. Its wavefunction is
written as a linear combination of atomic 1-s orbitals. One has to solve the
secular determinant is equal to:∣∣∣∣ α− E β − ES

β − ES α− E

∣∣∣∣ = 0

the eigenvalues of which are:

E± =
α± β

1± S

The corresponding wavefunctions are:

ϕ±(r) =
1√

2(1± S)
[ϕ1s(r −R1)± ϕ1s(r −R2)]

or, with a more general notation:

ϕ(r) =
2∑

n=1

Cnϕ1s(r −Rn)

The coupling lifts the degeneracy between the electronic states with the same
symetry leading to the existence of bonding and antibonding orbitals. Both
of them are two-fold degenerate.

We can apply the same technique to semiconductors compounds. Their
possess 8 valence electrons.

Examples

• Si: [Ne] 3s23p2

• GaN Ga: [Ar]3d104s24p1 & N:[He]2s22p3

• CdTe Cd: [Kr]4d105s2 & Te: [Kr]4d105s25p4

Let us consider a chain of N identical atoms with s2p2 configuration (this
is the case for Si for example). The electronic states of the crystal arise
from the coupling between atomic orbital having the same symetry that lifts
the degeneracy between them.The electronic states of the crystal can be
obtained by generalizing the concept of LCAO to a chain of N atoms, each
of which having one valence s−orbital that can only overlap with its two
immediate neighbours. the solution of which results in the existence of s and

3



p, bonding and antibonding orbitals that are N−fold degenerate. The way
these orbitals are ordered and occupied by the 8N valence electrons determine
the insulating or metallic character of the compound. The coupling depends
on the interatomic distance (figure 1). Depending on the relative energies
of the bonding p-orbital and the antibonding s-orbital, the highest occupied
molecular orbital (HOMO) can be saturated or unsaturated. Semiconductors
correspond to the case where the HOMO-orbital is saturated.

1.3 Fine structure

In most of the semiconductors, the top valence band is a six-fold degenerate
ℓ = 1 state while the conduction band is a two-fold degenerate s-state. If
we take into account the electron spin, the states at k = 0 are eigenstates
of the total angular momentum operator Ĵ that can take the values j = 1/2
and j = 3/2. The six bands are labelled |j,mj⟩ where mj is the projection
of j on the quantization axis. The spin-orbit interaction lifts the degeneracy
between j = 3/2 and j = 1/2 at k = 0.

ℓ = 0

ℓ = 1

j = 1/2

j = 3/2

j = 1/2

ΔSO

[1]

[3]

[2]

[4]

[2]

j = 1/2

j = 3/2

j = 1/2

ΔSO

[2]

[2]

[2]

j = 3/2 [2]

CB

VB

without spin with spin

Cubic lattice Hexagonal lattice

ΔCR

Figure 2: Fine structure at k = 0.
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1.4 Bloch theorem, dispersion

Up to now, we did not consider the translationnal invariance of the Coulomb
potential due to the periodic arrangement of atoms. If we consider a one-
dimensionnal infinite chain of atoms with a characteristic lattice vector a.
Because the arrangement is invariant through a translation of vector a, the
electronic density of probability must satisfy:

|ψ(x+ma)|2 = |ψ(x)|2

that is to say
ψ(x+ma) = eikmaψ(x)

This condition is fullfilled if ψ(x) has the form:

ψ(x) = e−ikxu(x) where u(x+ na) = u(x)

where 0 < |k| < π/a. This is the Bloch-theorem.
ψ(x) satisfies the Bloch-theorem on the condition that:

ψ(x) = N
∑
n

e−ik·naϕ(x− na) where N is a normalization factor.

k lifts the degeneracy between the crystal states that are spread and consti-
tutes quasi-continuous energy bands: there is energy dispersion as a function
of k in the reciprocal space(see figure 3). The highest occupied band is
the valence band while the lowest unoccupied band is the conduction band.
They are separated by the energy bandgap Eg. If the valence band maximum
and the conduction band minimum correspond to the same value of k, the
compound is said to be a direct bandgap semiconductor. If it is not the case,
it is said to be and indirect bandgap semiconductor. The band structure is
periodic in reciprocal space and is usually represented in the first Brillouin
zone with k ranging from 0 to π/a. In the following, we focus on the region
around k = 0 which is the one that is probed with optics.

1.5 Fine structure and effective mass

At k ̸= 0, the dispersion lift the degeneracy between bands of different j.
Near the band extrema, the Taylor expansions of the different energies are
quadratic:

En(k) = En(k0) + (k − k0)
∂En

∂k
+

1

2
(k − k0)

2∂
2En

∂k2
+ . . .
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Conduction band

Valence band

Bandgap

8N

8N

Filled VB

-

-

Figure 3: Dispersion of the valence and conduction bands in reciprocal space.

By setting

m∗ = ℏ2
(
∂2En

∂k2

)−1

The energy dependence with k becomes similar to the dispersion of a free
electron with an effective mass m∗.

2 Optical transitions

2.1 Caculation of the dipole moment matrix element

The probability of transition between an initial state |v,kv⟩ and a final state
|c,kc⟩ is:

|Wfi| = −qE0 ⟨c,kc|r̂ e−ik·r|v,kv⟩

⟨c,kc|r̂ e−ik·r|v,kv⟩ =
1

V

∫
crystal

u∗c,kc
(r) uv,kv(r)e

i(kc−kv−k0) rd3r

The crystal being periodic, we can express r as:

r = rj +R
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Germanium silicon Gallium arsenide

Eg
Eg

Eg

Figure 4: Examples of band stuctures: germanium and silicon are indirect
bandgap semiconductor. Gallium arsenide is a direct one.

where rj denotes the location of the jthunit cell andR the position within this
unit cell. The exponential functions are slowly varying in space as compared
to uc and uv. The integral over the whole crystal is broken up into a sum of
integrals over all the primitive cells

|Wfi| = −qE0
V

∑
j

∫
unit cell

u∗c,kc
(rj+R) uv,kv(rj+R) ei(kc−kv−k0)·(rj+R)(rj+R)d3R

The exponential functions are replaced by their average values in each prim-
itive cell and pulled out of the integral.

|Wfi| = −qE0
V

∑
j

ei(kc−kv−k0)·rj
∫
unit cell

u∗c,kc
(rj+R) uv,kv(rj+R) (rj+R)d3R

We use the periodicity of uv and uc

|Wfi| = −qE0
V

∑
j

ei(kc−kv−k0)·rj
∫
unit cell

u∗c,kc
(R) uv,kv(R) (rj +R)d3R
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|Wfi| = −qE0
V

∑
j

ei(kc−kv−k0)·rj
[∫

unit cell

u∗c,kc
(R) uv,kv(R) R d3R

+ rj

∫
unit cell

u∗c,kc
uv,kv(R) d3R︸ ︷︷ ︸

=0


The second integral in the brackets is equal to zero because the periodic part
the Bloch waves are orthogonals for different k.

∑
j e

i(kc−kv−k0) is a sum of
oscillating terms, it is equal to zero except for kc − kv − k0 = 0. Finally, we
find:

|Wfi| = −qE0
V
δkc−kv ,k0

∫
unit cell

u∗c,kc
(R) uv,kv(R) R d3R

2.2 Selection rules

In reciprocal space The optical transition is allowed if

kc − kv = k0

with k0 = 2π
λ0
. In the visible range, λ0 ≃ 500 nm. The extension of the first

Brillouin zone is 2π
a

with a ≃ 0.5 nm. So, at the scale of the first Brillouin
zone, the transitions are vertical in the reciprocal space:

kc ≃ kv

and:

|Wfi| ≃ −qE0
V

∫
unit cell

u∗c,0(R) uv,0(R) R d3R

Angular momentum conservation At the Γ point uc,k and uv,k are eigen-
state of the angular momentum operator:

uc,0 = |s, sz⟩

uv,0 = |j, jz⟩

When a circularly polarized photon is absorbed, this angular momentum
is distributed between the photo-excited electron and hole according to the
selection rules determined by the band structure of the semiconductor.
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j = 3/2

j = 1/2

s = 1/2

jz = - 3/2 jz = - 1/2 jz = 1/2 jz = 3/2

jz = - 1/2 jz = 1/2

sz = - 1/2 sz = 1/2

σ+ σ+

σ+

s-s-

s-

3 1 3 1

2 2

ΔJ = ± 1

Figure 5: SC Optical Selection Rules.

2.3 Electrons and holes

An amount of energy can promote an electron from the valence to the con-
duction band excitation, n−1 electrons remaining in the valence band. This
equivalent to creation of one electron-hole pair.

2.4 Absorption and spontaneous emission

The transition rate per unit time between a discrete state and a continuum
is given by the Fermi’s golden rule.

Γ =
2π

ℏ
|Wfi|ρ(Ef − Ei) =

dPif

dt

where ρ(Ef −Ei) is the density of states associated with the final state. For
a transition occuring between the VB and the CB, both the initial and final
states belong to a continuum.

2.5 Direct and indirect bandgaps

v In a direct bandgap semiconductor, the maximum of the valence band and
the minimum of the conduction band correspond to the same value of k in
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One conduction electron

n -1 valence electrons

One conduction electron

1 hole

Figure 6: n−1 negatively charged electrons in the valence band are equivalent
to one positively charged hole.

reciprocal space. On the contrary, in an indirect bandgap semiconductor,
these two extrema are located at different values of k. As a consequence, in
indirect bandgap semiconductors, the k conservation rule cannot be satisfied
for a transition between the top of the valence band and the bottom of the
conduction band. This is not a problem for light absorption process because it
can occur between the maximum of the valence band However, the interaction
with a phonon can conserve the momentum. One consequence of this, is that
indirect bandgap semiconductors are poor light-emitters.

3 Excitons

4 Nanostructures
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k0 ~ 2p / l with l ~ 500 nm

kc , kv ~ 2p / a with a  ~ 0.5 nm 
k0 << kc , kv

Transitions are vertical in reciprocal space

Direct bandgap Indirect bandgap

Figure 7: Direct and Indirect Transitions.
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Master MCN 
Light-matter interactions – Exercise classes 

 
Session No. 1, Oct 4th, 2022 

S. Haacke & M. Gallart 

Light-induced population inversion in 2- and 3-level systems 
 
A) The 2-level system 

We consider a two-level system as depicted in figure 1, where the populations N1 and N2 of the 
ground and excited state, respectively, are subject to spontaneous emission (A), absorption (B12) 
and stimulated emission (B21). The latter two processes are induced by an external EM field with 
energy field <W(w)>. 

 
Figure 1: Two-level system with transitions as defined by the Einstein coefficients. The EM field at frequency w is resonant 
with the energy difference of the two states. 

Recall on the lecture 
1. When the energy density is increased, the rate of absorption increases, as much as the 

rate of stimulated emission. Justify the behaviour described in figure 2, the dependence 
of the populations N1 and N2 as a function of the energy density <W(w)>. 

2. What defines the saturation density Ws ? 
 

 
Figure 2: Steady-state atomic population as a function of the radiative energy density 

 



 2 

3. In the limit of <W> à infinity, what would be the effective temperature T of the atoms, 
assuming g1 = g2 ? Use the Boltzmann form 

𝑁! = 𝑁"𝑒
#	!"#!$%&' , where kB is the Boltzmann constant 

 
4. In the case of a hypothetical population inversion, i.e. N2 > N1, how would this 

temperature change ? Conclusion ? 
 

B) Population inversion in a 3-level system, optical gain, amplification 
We now consider the 3-level system depicted in figure 3. The atomic system is excited by an EM 
radiation resonant with the 0-2 transition and under a rate R. A second EM wave, resonant with the 
1-2 transition allows for absorption and stimulated emission between the levels 1 and 2. 
Spontaneous emission is allowed between all levels (coeff. A). 

 

 
Figure 3: A three-level system "pumped" by R into level 2. What is the attenuation or amplification of the EM wave W(w) 

resonant with the 1-2 transition ? Is it possible to have a population inversion between 2 and 1 in this configuration ?  

We assume the refractive index to be 1 in this dilute gas.  
1. Derive the rate equations for the change of populations per time %&(

%'
, %&$
%'
	 , %&"

%'
, and show 

that – under steady state conditions, i.e. %
%'
= 0, the following relations hold: 

𝑁!(𝐴!" + 𝐵!"〈𝑊〉) = 𝑁"(𝐴"( + 𝐵!"〈𝑊〉)   (1) 
𝐴"(𝑁" + 𝐴!(𝑁! = 𝑁(𝑅    (2) 

 
Use the fact that the sum of populations is a constant: 𝑁( +𝑁" +𝑁! = 𝑁 

2. In order to observe population inversion, N2 > N1, what does eq. (1) imply for the 
coefficient A21 with respect to A10 ? Give a physical interpretation of this relation in terms 
of the corresponding spontaneous emission rates. 

3. Combine eqs. (1) and (2) to obtain the following  

𝑁! −𝑁" =
&()(+$(#+"$)

+$((+"(-+"$)-(+$(-+"()."$〈0〉  (3) 

We assume now that the depletion of N0 is small, meaning N0≈N. Assuming A10 > A21, make 
a schematic drawing of (N2-N1)/N as a function of the energy density <W>. How does this 
compare to Figure 2 ? 

Calculation of the gain coefficient 

We now want to derive how the energy density <W> evolves, as it propagates through the 
volume of gas. In the case of population inversion, the rate of stimulated emission is higher 
than the one of absorption between levels 1 and 2. Hence, one can expect that more EM 
energy comes out than what is put in, since stim. emission produces two outgoing photons for 
one incoming photon. This is called optical gain. 
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For the temporal change of the energy density <W>, the following equation derived in the 
lecture still holds  

%〈0〉
%'

= (𝑁! −𝑁")𝐹(𝜔)𝐵"!〈𝑊〉ℏ𝜔.    (4) 

F(w) is the normalised line shape function (a Lorentzian or a Gaussian) expressing the fact that 
the atomic transition resonances have a finite broadening. 

4. Under population inversion, how does <W> evolve in time ? 
5. We will now establish the spatial dependence of the light intensity I(z) along the 

propagation direction z. To this end, justify the following two relations given in the lecture: 
𝐼 = 𝑐 < 𝑊 >, with c the velocity of light, and %2

%3
= %405

%'
. 

6. Combine eq. (3) and (4) to establish the following differential equation  
"
2(3)

81 + 2(3)
2)
: %2(3)

%3
= )(+$(#+"$)

+$((+"(-+"$)
𝑁𝐹(𝜔)𝐵"! ℏ𝜔 𝑐⁄ = 𝐺(𝜔)  (5) 

where 𝐺(𝑤)	is the “gain coefficient”, as will become clear in the following, and the 
saturation intensity is 

𝐼6 =
7+$((+"(-+"$)
(+$(-+"().

      (6) 

7. Show that the general solution of eq. (5) is 

𝑙𝑛 8 2(3)
2(38()

: + 2(3)#2(38()
2)

= 𝐺(𝜔)𝑧    (7) 

8. Consider the behaviour for two limiting cases: a) I(z) is much smaller than the 
saturation value Is, and b) the opposite. Draw the curve I(z)/I(0) as a function of 
G(w)z, for two different values of the saturation intensity, and for two different 
values of R. Comment the qualitative changes. 

9. What are the parameters, which lead to a small saturation intensity IS ? 

 

Practical use in lasers 

Population inversion between to quantum levels 1 and 2 à optical gain or amplification of 
radiation that is resonant with the transition energy ℎ𝜈 = 𝐸! − 𝐸". This is used in the gain 
medium of a laser. Population inversion can either be induced through optical pumping, as 
in the example given here (the quantity R), or by injection of carriers through electric current 
like in a semiconductor diode laser. Besides the gain medium, what are the additional 
components to make a laser ? 
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Master MCN 
Light-matter interactions – Exercise classes 

 
Session No. 2, Oct 18, 2022 

S. Haacke & M. Gallart 

Time-dependent perturbation theory 
 

A) Lecture revision and interpretation. 
 

Within time-dependent perturbation theory exposed in the lecture, the transition probability 
between two state i and k is given by 

 
1. For the case of a two-level system, revisit the lecture material and justify the expression 

for the transition probability, between the two discrete states i and f , under the action 
of a sinusoidal perturbation:  

, with 𝜔!" =	$𝐸! − 𝐸"' ℏ⁄ . 
Plot the result as a function of w, and discuss the time range of validity, keeping in mind 
that Pik ≤1. 

2. For a constant perturbation, derive the result found in the lecture: 

 
3. Trace this probability for different values of t, and give an intuitive description of the 

time-dependent transition probability. 
 

B) Two-level system with a constant non-resonant perturbation, full treatment: Rabi 
oscillations 

We explore here an alternative, more general treatment of perturbations, which, in the case of a two-
level system, is simpler in formalism and can be used without limitations to the strength/amplitude of 
the perturbation interaction W. In this context, we’ll introduce the two limits of “strong” and “weak” 
coupling, which are frequently used concepts for the description of light-matter interactions of QM 
systems (e.g. atoms/molecules in an EM cavity). 
 

1. We study a two-level system, defined by the orthogonal eigenstates of an unpertubed 
Hamiltonian H0.  

 

Pik =
1
!2

dt'
t0

t

∫ W( t') exp
i Ek − Ei( )t'

!

⎛

⎝
⎜

⎞

⎠
⎟

2

Pif =
Wfi

2

4!2
t2
sin ω fi −ω( )t / 2⎡

⎣
⎤
⎦

ω fi −ω( )t / 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

Pif =
Wfi

2

!2
t2
sin

ω fit
2

⎛
⎝⎜

⎞
⎠⎟

ω fit
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

H0 ϕ1 = E1 ϕ1
H0 ϕ2 = E2 ϕ2 ϕ i ϕ j = δ ij
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Under the effect of a perturbation W, the full Hamiltonian is H = H0 +W. In the unperturbed 

basis W is a Hermitian matrix:  , with W21 = W12*. 

The system is described by new eigenstates and eigenenergies E+ and E-:  

  
Show that the new eigenenergies are given by 

   

𝐸± =
1
2
(𝐸$ +𝑊$$ + 𝐸% +𝑊%%) ±

1
2
1(𝐸$ +𝑊$$ − 𝐸% −𝑊%%)% + 4|𝑊$%|% 

 
 
It can be shown (cf. Cohen-Tannoudji, vol. 1, supplement BIV) that the eigenstates are given by 

, with          
 

2. A graphical representation of the eigenenergies 
The perturbation mixes states 1 and 2 due to the non-diagonal matrix elements W12. We will 

only retain these in the following and assume W11=W22=0.  
Introduce the quantities 𝐸& = $

%
(𝐸$ + 𝐸%), and Δ = $

%
(𝐸$ − 𝐸%), and draw the two branches 

of 𝐸±, as a function of D.  When the energy axis of D crosses the energy axis in the ordinate 
Em, the curves for 𝐸±,  are two hyperbolas which are symmetric to the coordinate axes. E1 and 
E2 can be represented as straight lines with slope +1 and -1, respectively.  

• Describe how the effect of the perturbation 𝐸' − 𝐸$		(Δ > 0) or 𝐸' − 𝐸%		(Δ < 0) 
changes as a function of |Δ|.  

• What is the value of the “resonance splitting” for Δ = 0 ? 
• Give examples of quantum mechanical systems, which show modified eigenenergies 

due to such non-diagonal interaction terms (W12). 
3. The dynamic evolution 

The state of the whole system is in a superposition of the eigenstates 

 
In order to obtain the time-dependent evolution in the states f1 and f2, we’ll assume that 
the system is initially in and project its evolution on the basis f1 and f2. 

a) Express  in the basis . 
b) Write the time-dependence of Ψ(𝑡)⟩	in this basis. 
c) Show that the time-dependent probability for transition into 𝜑%⟩ is given by 

 
This is called the “Rabi transition probability”. 
 

4. Discussion – Evolution as a function of the perturbation 
a) Show that P12 oscillates with the Rabi frequency 𝜔'/) = (𝐸' − 𝐸)) 2ℏ⁄ ,	and with 

maximum amplitude 𝑠𝑖𝑛%𝜃. Draw the time evolution.  

W =
W11 W12
W21 W22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

H ϕ+ = E+ ϕ+

H ϕ− = E− ϕ−

ψ + = cosθ
2
e− iϕ /2 ϕ1 + sinθ

2
e+ iϕ /2 ϕ2

ψ − = − sinθ
2
e− iϕ /2 ϕ1 + cosθ

2
e+ iϕ /2 ϕ2 tanθ =

2W12
E1 +W11 − E2 −W22

; W21 = W12 e
iϕ

Ψ( t ) = λe− iE+t ! ψ + + µe− iE−t ! ψ −

Ψ( t = 0 ) = ϕ1

Ψ( t = 0 ) = ϕ1 ψ + and ψ −

P12( t ) =
4W12

2

4W12
2
+ E1 − E2( )2

sin2 4W12
2
+ E1 − E2( )2 t2!

⎛
⎝⎜

⎞
⎠⎟
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b) Give an interpretation of this result, and discuss the two limiting cases 𝐸$ = 𝐸% and 
“weak coupling” (𝐸$ − 𝐸%) ≫ |𝑊$%|. 

c) Which case is represented by the two curves 
(a) and (b) on the right. How does the 
coupling or the energy difference E1-E2 
change between (a) and (b) ?  
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Master MCN 
Light-matter interactions – Exercise classes 

 
Session No. 3, Oct 25, 2022 

S. Haacke & M. Gallart 

Bloch vector representation of a two-level system 
 
1. The most general form of a two-level system eigenstate is: 

|𝜓⟩ = 𝑐𝑜𝑠 (!
"
) 𝑒#$

!
" |𝑎⟩ + 𝑠𝑖𝑛 (!

"
) 𝑒%$

!
" |𝑏⟩. 

We note 𝜎1 the corresponding density matrix operator. 

Let us consider the so-called Bloch vector	𝑼44⃗ = 6
𝑢
𝑣
𝑤
:, the coordinates of which 

are defined as 

⎩
⎪
⎨

⎪
⎧𝑢 =

1
2
(𝜎&' + 𝜎'&)

𝑣 =
1
2𝑖
(𝜎&' − 𝜎'&)

𝑤 =
1
2
(𝜎&& − 𝜎'')

 

By using the general expression of |𝜓⟩, compute the expression of u, v and w 
as a function of q and f. Show that the extremity of 	𝑈444⃗  spans the surface of a 
sphere with radius ½. Draw a sketch displaying the angles q and f. 

2. Now, we assume that |𝜓⟩ describes the eigenstate of a two-level system 
interacting with a sinusoidal electromagnetic field with angular frequency ω. 
The optical Bloch equations, in the absence of relaxations, are: 

𝜎̇&& = −𝑖
Ω(
2
G𝜎'&𝑒#$)* − 𝜎&'𝑒%$)*H

𝜎̇'' = +𝑖
Ω(
2
G𝜎'&𝑒#$)* − 𝜎&'𝑒%$)*H

𝜎̇&' = +𝑖𝜔+𝜎&' − 𝑖
Ω(
2
𝑒#$)*(𝜎'' − 𝜎&&)

𝜎̇'& = −𝑖𝜔+𝜎'& + 𝑖
Ω(
2
𝑒%$)*(𝜎'' − 𝜎&&)

 

where Ω1 is the Rabi frequency and ω0 is the Bohr frequency of the transition. 
Use the rotating frame transformation to eliminate the rapid time-dependence 
in the previous equation set. What is the physical meaning of this 
transformation? 

3. By use of the results obtained in question 2, write the differential equations 
that are obeyed by 𝑢	J , 𝑣	Jand 𝑤	K, the three components of 𝑼L in the rotating 
frame. Show that 𝑼L undergoes a precession around a vector 𝜴 whose 
coordinates will be given. What is the frequency of this precession? 

4. We focus on the case where the electric field frequency is resonant with the 
Bohr frequency of the transition, with the system initially in the ground state 



 2 

|𝑎⟩. Give the equation of motion of 𝑼L. How is the precession modified as 
compared to the case treated in question 3? What is its new frequency? What 
is the time evolution of the excited state population? 
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Master	MCN	
Electromagnetism	–	Exercise	classes	

November 15, 2022 

S. Haacke & M. Gallart 

The	transition	dipole	moment	–	transition	rates	–	selection	rules	–	how	to	
measure	the	TDM	

1) Transition	dipole	moments	of	the	3pz	–	2s	transition	in	H	atom	

In the Sun’s atmosphere, the Ha emission occurs due to 
emission of a gaz of hot H atoms. The transition is the 
longest wavelength emission in the Balmer series:  3pz –> 2s. 
a) Determine the transition frequency, and the wavelength 

of emission.  
b) Show that the z-component of transition dipole moment 

is      
 and determine C (e: elementary charge, a0: Bohr 
radius). To this end use the hydrogenoid wavefunctions 
provided in the appendix 

c) Show that the TDM of the 3s –> 2s is zero. Try to predict a general rule for the occurrence of 
TDM = 0, in terms of the inversion symmetry of the wavefunctions of the initial and final 
states.  
These rules are termed “selection rules” since they select the quantum mechanically allowed 
transitions among all those, which are energetically possible. 

d) Is the emission due to stimulated or spontaneous emission ?  

• Evaluate the transition rate given by . Here, the Einstein coefficient 

B3p-2s is related to the total TDM by , and the spectral power density of the 

sun, approximated by a black body is . Use 5400 K for the T of the sun’s 
photosphere. 

• Compare this rate to the one of spontaneous emission given by   

2) How	can	we	measure	the	TDM	?	
We’ll show in this exercise that the extinction coefficient or absorption cross section of any 
material allows to determine the TDM, or equivalently, the oscillator strength of the measured 
transition. 
a) Consider a two-level system with an initial low energy state |𝑖 > and a high-energy final state 

|𝑓 >. Write down the rates of change of population in the inital and final states 𝑇!⟶# and 

µz = −e ψ *3pz z∫∫∫ ψ 2s r
2 sinθ dϕdθ dr = −Cea0

Ti→ f = B3p→2s ρrad ν( )

 
Bi→ f =

i µ
!"
f

2

6ε0#
2

ρrad =
8πhν 3 c3

exp hν
kT

⎛
⎝⎜

⎞
⎠⎟
−1

A3p→2s = B3p→2s
8πhν 3

c3
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𝑇#⟶!, due to absorption and stimulated emission of light with the frequency 𝜈 =
(𝐸# − 𝐸!+ ℎ⁄ . To this end, use the standard description with Einstein coeffients Bi-f = Bf-i, 
and the spectral energy density 𝜌$%&(𝜈) .  

b) Relate the Einstein coefficient to the transition dipole moment. To this end, we recall 
Fermi’s golden rule for the transition rate (unit 1/s) between initial an final state due to a 

perturbation W : . Here, 𝜌(𝐸#!+ is the density of excited 
states, reached by absorption of photons with 𝜈 = (𝐸# − 𝐸!+ ℎ⁄ .	
Develop the expression for the transition rate using the electric dipole approximation for W, 

and introduce the energy density of the e.-m. field, .  

c) We introduce now the energy density per Hz rrad(n), related to the energy density by 
𝑤'((𝜈) = 𝜌$%&(𝜈)𝑑𝜈.	For a transition into a discrete state, but accounting for a large 

number of photon states, expressed by rrad(n) , with energies in the range of Efi to Efi + dE, 

one finds  

Compare this expression with the transition rates for absorption found in the Einstein 

equations. Justify that  , and that Bi-f = Bf-i. 

d) We now relate the molecular transition rate to the reduction of rrad due to absorption. 
To this end, use Lambert-Beer’s Law to express the change of light intensity dI due to 
absorption over a sample of length dz , containing Ni molecules with an absorption cross 

section a. Write the same equation in terms of drrad , using the relation . 

e) Express the intensity of light as the surface photon density nph. Relate the molecular 
transition rate due to absorption to the change in the surface photon density nph/dt.  Show 

that , or for molecules in solution using the molar extinction coefficient e(n): 

  

NB : Lambert-Beer’s law using molar extinction coefficient e(n): , 

with C, the molar concentration (Mol/L).  

 

  

 
Ti→ f =

2π
!

i W f 2
ρ Efi( )

wEM = 2ε0
!
E
2

 
Bi→ f =

i µ
!"
f

2

6ε0#
2

I = c
n
ρrad ν( )

Bif =
c
n
α ν( )
hν

Bif =
ln10c
hnNA

ε ν( )
ν

I( z ) = I010
−ε (ν )C z

 
Ti→ f =

1
6ε0!

2 i µ
"#
f

2
ρrad ν = Efi h( )
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ρ = (2Z/na0)r 
 

 



The sun’s Hα line : The 3p → 2s transition in hydrogen 
 
A. Determine the transition frequency, given the formula for energy levels (1) 

 
 
And thus n = 4.57 x 1014 Hz. 
 

B. Show that the transition dipole moment is  
and determine C. 
 
The definition of the z-component of the transition dipole moment gives

 
with the real-valued wavefunctions given for 3pz and the 2s state,  

𝜓 ∗!"!= 𝜓!"! = 𝑌#$%,'#$((𝜃, 𝜑)𝑅!,%(𝑟) = 	
1
2 /
3
𝜋2

"
#
𝑐𝑜𝑠𝜃 /

1
𝑎(
2
$
# 1
9√6

(4 −
2𝑟
3𝑎(

)
2𝑟
3𝑎(

𝑒)
*
!+%  

𝜓,- = 𝑌#$(,'#$((𝜃, 𝜑)𝑅,,((𝑟) = 	
1
2√𝜋

/
1
𝑎(
2
$
# 1
2√2

(2 −
𝑟
𝑎(
)𝑒)

*
,+%  

 
We find, after multiplying all the prefactors,  

, where the 2p comes 
from the integral over f. 
 
The integral over q is 2/3, so that  

⟨3𝑝.|𝜇.|2𝑠⟩ = −
𝑒
72
2
3
C D8 −

16
3
𝑟
𝑎(
+
2
3 /

𝑟
𝑎(
2
,
G
2
3
𝑟
𝑎(/

/
𝑒)0* 1+%⁄ 	𝑑𝑟

3

(
 

 
After variable transformation 
 

⟨3𝑝.|𝜇.|2𝑠⟩ = −
𝑒𝑎(
9 × 18

C /8 −
16
3
𝑢 +

2
3
𝑢,2𝑢/𝑒)04 1⁄ 𝑑𝑢

3

(
 

With  it follows that 
 

⟨3𝑝.|𝜇.|2𝑠⟩ = −
𝑒𝑎(
9 × 18 /

6
52

0
4! M8 −

16
3
6
5
× 5 +

2
3
36
25

× 30O 
 
We thus obtain for the z-component of µ: μz = −1,769 ea0. This is indeed a dipole moment (charge x 
distance) with the right order of magnitude.  



 
C. Show that the TDM of the 3s –> 2s is zero. 
For the 3s à 2s transition, the integral over q vanishes, and therefore ⟨3𝑠|𝜇!|2𝑠⟩ = 0. In more general 
terms, if the integral goes over a function 𝑓(𝑟)%%%⃗ 	with an odd symmetry, with respect to the sign inversion 
of 𝑟⃗, 𝑓(−𝑟)%%%⃗ = 	−𝑓(𝑟)%%%⃗ , then the integral is zero. 
 
 
D. Is the emission due to stimulated or spontaneous emission ?  

1) Evaluate the transition rate for stimulated emission given by . Here, 

the Einstein coefficient B3p-2s is related to the total TDM by , and the spectral 

power density of the sun, approximated by a black body is . Use 5400 K for 
the T of the sun’s photosphere. 

 
The total transition dipole moment |⟨𝑖|𝜇|𝑓⟩|, = 𝜇5, + 𝜇6, + 𝜇., = 3𝜇., since the atom is spherical. 

Hence, the Einstein coefficient is 𝐵!"),- =
78𝑖7𝜇7𝑓97

#

1:%ℏ#
= 1.16 1021 J-1 m3 s-2. 

 
For T= 5400 K, and n = 4.57 x 1014 Hz, we find rrad = 1.037 10-15 J/(Hz m3). 
 
It follows for the transition rate of stimulated emission 𝑇<= = 𝐵!"),-𝜌*+>= 1.20 106 s-1. 
 

2) Compare this rate to the one of spontaneous emission given by   

 
Indeed, spontaneous emission does not involve the radiation field, and the transition rate is simply 
𝑇-" = 𝐴!"),-. 

We find ?@AB
$

C$
= 5.87 10-14 Jsm-3, and thus 𝐴!"),- =6.82 107 s-1.  

Tsp is roughly 50 times higher than TSE ! The atoms recombine more frequently by spont. emission 
than by stim. emission. This is true in general, unless the radiation field is very intense and 
enhances stim. emission, as it is the case in a laser  (the laser cavity creates a very high energy 
density).  
 
The average lifetime of the atoms in the 3p level can therefore be deduced from the simple 
relation: 𝜏 = %

D&'
=	14.7 ns. This is a typical order of magnitude for radiative lifetimes of atoms and 

molecules (2-20 ns for allowed an intense transitions). 
 

 
 

Ti→ f = B3p→2s ρrad ν( )

 
Bi→ f =

i µ
!"
f

2

6ε0#
2

ρrad =
8πhν 3 c3

exp hν
kT

⎛
⎝⎜

⎞
⎠⎟
−1

A3p→2s = B3p→2s
8πhν 3

c3
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Master	MCN	
Light-Matter	interactions	–	Exercise	classes	

Sessions No. 6&7, Dec 2 & 16, 2021 

S. Haacke & M. Gallart 

Vibrational mid-IR spectroscopy - Franck-Condon principle – Franck-Condon factors for vibronic 
transitions – absorption spectra of polyatomic molecules 

Background and motivation 
What determines the spectral width of absorption and emission spectra of polyatomic molecules ? 
Many examples like figure 2 exist, where the spectra are periodically modulated.  

Task	1:	Selection	rules	in	vibrational	mid-IR	spectroscopy	–	the	harmonic	
oscillator	

The IR absorption spectrum of benzene (below, https://sdbs.db.aist.go.jp/sdbs/cgi-
bin/direct_frame_top.cgi) shows only one peak for the C=C vibration (1479 cm-1), although many 
transitions n=0 à n’, called “overtones”, are energetically possible. For a harmonic oscillator, these 
should appear at 2 x 1479 cm-1, 3x 1479 cm-1 and so on. Why aren’t they observed ? 

a) Find out (Google) where this energy scale in cm-1 comes from. In spectroscopy, this unit is 
called “wave numbers” or “inverse centimeters”. 

b) What are the different peaks in the spectrum due to ? 
c) Derive the selection rules for IR absorption (transitions in the ground state harmonic 

oscillator), by using the recursion and orthogonality properties of Hermitian polynomials (cf. 
lecture). 

 
Figure 1: Mid-IR transmission spectrum of benzene in gas phase. Energy scale in cm-1 (“wave 
numbers”).  

Task	2	:	Vibronic	progressions	in	UV/VIS	spectra	
Calculate approximately the energy difference of the peaks labeled (0-0’), (0-1’), (0-2’), (0-3’), and 
determine the corresponding average frequency (in cm-1). What kind of molecular excitation 
does this frequency correspond to ? 

Wavenumber (cm-1) 
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https://chemistry.stackexchange.com/questions/76942/calculating-the-uv-vis-spectrum-of-perylene 

 
Figure 2: Absorption and emission spectra of perylene in the solvent benzene.  

The absorption and emission transitions occur between electronic states (cf. fig. 3), the potential 
energy surfaces of which are bound potentials. These can be approximated by harmonic 
potentials describing the molecular vibrations along specific bonds (e.g. C=C, or C-C). These 
molecular vibrations are quantized, with eigenenergies 𝐸! = ℏ𝜔(𝜈 + 1 2⁄ ) , according to the 

quantum number n, and with the wavefunction , with a defined by 

the relevant reduced mass µ and the spring constant k: 𝛼 = !"#
ℏ

, and Hn(√𝛼x) the Hermitian 

polynomials. The normalization constant is 𝑁" = / #
$!"!0

&
'1

# $⁄

. 

 
Figure 3: Schematic of the vibronic transitions in absorption (left) and emission (right). 

More in detail the total wavefunction is described by an electronic and a vibrational part: 

, with e indexing the electronic state. This is the Born-
Oppenheimer approximation, based on the fact that nuclei move much slower than electrons. 

ϕ
ν

!
R( ) = NνHν α x( )e−αx2 /2

Ψ = ε ,ν

Ψ !r ,R
"!( ) =ψ ε

!r ,R
"!( )ϕν R

!"( )

(0-0’) 

(0-1’) 

(0-2’) 

(0-3’) 
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The transition dipole moment then reads: 

 

The Franck-Condon principle, assumes that during light absorption the atoms do not move (R= 
const.), leading to factorisation of the integrals: 

 

The electronic part includes the selection rules (symmetry of electronic wavefunctions), while 
F(n’,n), the Franck-Condon factor, modulates the transition strength giving rise to the periodic 
modulations observed in fig.2. We will explicitely calculate them in the following. 

 

Task	3:	Calculate	the	FC	factors	F(n’,n)	

a) n’=0 à n=0. The n’=0 vibrational state in the electronic ground state is 

, with Re, the equilibrium bond length in the electronic ground 

state, and , the one for the excited state with Qe, the excited state 
equilibrium bond length (fig. 2). We assume the same a, meaning the same 
restoring force constant k in both electronic states. Show that  
  

For this use    .  Plot F(0’,0) as a function of Δ = 	√𝛼∆𝑅 = √𝛼	(𝑅) − 𝑄))	 and 
justify its shape. 

b) n’=0 à n=1. The n=1 vibrational state in the electronic excited state is  

𝜑"*#	(𝑅) =
#
√$
9-
'
:
# .⁄

𝐻#(𝑅 − 𝑄))𝑒
/"($%&')

)

) = √29-':
# .⁄

√𝛼	(𝑅 − 𝑄))	𝑒
/"($%&')

)

) .  

Show that , and discuss its shape as a function of D 
compared to F(0’,0). 

c) If we introduce the displacement of the two potential energy curves ∆= √𝛼(𝑅) − 𝑄)),	and 
the Huang-Rhys factors as 𝑆 = Δ$ 2⁄ , one can show that for transitions to higher vibrational 

states, the square of the Franck-Condon factors are . Justify this 
result on the basis of the form of the Hermitian polynomials. 

d)  For the emission process, the transitions occur from n=0 à n’ (fig. 2), since vibrational 
relaxation in the excited state leads to population only of n=0  (in the limit ℏ𝜔 ≫ 𝑘0𝑇). 

Justify that .  

ε ',ν ' !µ ε ,ν = ϕ
ν '

* !R( ) ψ ε '
* !r ,

!
R( ) !µψ ε

!r ,
!
R( )d 3!r∫{ }∫ ϕ

ν

!
R( )d 3 !R

ε ',ν ' !µ ε ,ν = ψ ε '
* !r ,

!
R( ) !µψ ε

!r ,
!
R( )d 3!r∫{ } ϕ

ν '

* !R( )∫ ϕ
ν

!
R( )d 3 !R

= ψ ε '
* !r ,

!
R( ) !µψ ε

!r ,
!
R( )d 3!r∫{ }× F(ν ',ν )

ϕ
ν '=0

!
R( ) = α

π
⎛
⎝⎜

⎞
⎠⎟

1 4

e−α R−Re( )2 /2

ϕ
ν=0

!
R( ) = α

π
⎛
⎝⎜

⎞
⎠⎟

1 4

e−α R−Qe( )2 /2

e−ax
2

dx
−∞

∞

∫ = π
a

F 0',1( ) = α
2

Re −Qe( )e−α Re−Qe( )2 /4

F(0',ν )
2
= S

ν

v!
e−S

F(0',ν )
2
= F(0,ν ')

2

F 0',0( ) = e−α Re−Qe( )2 /4
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e) Optional: Show that , by using the fact that the vibrational wavefunctions 
form a complete orthonormal basis set. 

Task	4:	Building	a	theoretical	absorption	spectrum	including	the	FC	factors	

Figure 4a displays the situation for S=1, for the displaced harmonic oscillators. Figure 4b gives a 
schematic absorption spectrum. Determine the energy (in cm-1) of the main parameters used: 
the electronic transition energy Δ𝐸 = 𝐸(𝑆# − 𝑆1), and the vibrational quantum ℏ𝜔. 

 

Figure 4: a: Alignment of excited and ground state harmonic potentials for S=1; b: Schematic absorption 
spectrum for the situation depicted in (a). The vibronic transitions are broadened by a Gaussion function. 

a) Build the absorption and emission spectra using the same parameters, but for S=2. 
b) Determine the Stokes shift, the difference between the maximum of absorption and 

emission spectra (cf. lecture), for S=2. 

F(0',ν
2
= 1

ν
∑
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Master	MCN	
Light-Matter	interactions	–	Exercise	classes	

Sessions No. 8, Dec 6, 2022 

S. Haacke & M. Gallart 

Rotational & Vibrational mid-IR spectroscopy  

Background and motivation 
Understand the rotational fine structure observed in mid-IR absorption of a di-atomic molecule 
in a dilute gas.  

Figure 1 presents the mid-IR absorption spectrum of H-Cl in diluted gas phase, with increasing energy 
from right to left. Every peak appears as a doublet. The spectral lines are determined in cm-1. The 
values for the four central peaks are ν = 2906,24 ; 2904,11 ; 2865,10 ; 2863,02 cm-1 

 

Figure 1: Mid-IR transmission spectrum of HCl in gas phase. Energy scale in cm-1 (“wave 
numbers”).  

 

Question	1:	Explain	the	origin	of	the	absorption	peaks	
The spectral range is in the mid-infrared (3-30 µm), which means that the photon energy is not large 
enough to induce transitions between electronic states. The observed transitions are between 
quantum states in the electronic ground state only. 

a) Recall the eigenergies of a di-atomic molecule including the vibrational and rotational 
eigenstates, using the quantum numbers n (harmonic oscillator) and J (rotation of a molecule 
with moment of inertia I). Make a schematic diagram of the quantum levels involved in the 
spectral transitions. 

b) Within the dipolar approximation, recall the selection rules for vibrational and rotational 
transitions, between the eigenstates.  

c) The “R branch” corresponds to transitions with DJ=+1 and the “P branch” to DJ=-1. Where 
are these branches located in the spectrum ? 

d) The origin of the doublet structure is due to an “isotope effect”. Indeed Cl is present in both 
the 35Cl and 37Cl isotopes. How does the isotope effect change the transition energies ? 



 2 

e) The intensity of the peaks is given by the absorption A=1 -T. And A is proportional to the 
number of molecules in the ground state: N (n=0) = f(J). Find a formula expressing N(J) as a 
function of temperature T and the degeneracy of the rotational levels gJ. What is the origin of 
the decreasing peak intensity on both sides of the spectrum ? 

f) What spectral resolution Dl/l is required to resolve the doublet structure ? 

Question	2	:	Determine	the	molecular	parameters	

a) Show that, for the intense peaks in the doublets, the rotational constant 𝐵 = !!

"#!$
 is equal to 

10,28 cm-1. What is the value of the moment of inertia I ? 
b) Calculate the reduced mass for 35Cl and calculate the interatomic radius r from the value of I.  
c) From the vibrational frequency w, show that the force constant k is equal to 476 Nm-1. N.B. 

Use the first peak of the R band to determine the vibrational transition frequency ℏ𝜔. 
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Exam in “Light-matter interactions” 

S. Haacke & M. Gallart 

Test duration: 3 hours 

__________________________________________________________________________________________ 

I- Spectroscopy of the tetracene monomer 

The figure below displays the normalized steady state absorption (black) overlapped 

with the steady state fluorescence (red) of the tetracene monomer. In this part, we 

will interpret these experimental results by using what we know about the 

spectroscopy of diatomic molecules. 

 
Figure 1 :Absorption(black line) and emission (red line) of tetracene in a toluene solution1. 

1- Give the formal expression of the wavefunctions associated with the electronic 

states of a diatomic molecule. Which quantum numbers label each component of the 

total wavefunction and of which degree of freedom are they characteristic? 

2- Describe the initial and final states that are implied in the optical transitions 

responsible for the spectra presented in the figure 1. Draw a sketch of these energy 

levels labeled with the right quantum numbers. 

3- Explain in few words what is the Franck-Condon approximation. Using the simple 

theoretical model that you know, outline the concept and general formulas by which 

the intensity of each individual spectral line can be calculated, both in absorption 

and emission. 

4- The individual lines within each spectrum are split by a constant amount of energy 

ħω0. What is this energy quantum characteristic of? Describe now qualitatively the 

scenario leading, after light-absorption from the molecular ground state, to light 

emission from an excited state. Specify which relaxation processes or transitions 

between the quantum states are radiative or non-radiative. How can one explain the 

mirror symmetry between both spectra of figure 1? 

 

                                                           
1 Burdett, Jonathan & Mueller, Astrid & Gosztola, David & Bardeen, Christopher. (2010). Excited state dynamics 
in solid and monomeric tetracene: The roles of superradiance and exciton fission. The Journal of chemical 
physics. 133. 144506. 10.1063/1.3495764. 
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II- Einstein equations and perturbative approach  

The Einstein model of light-matter interaction is a phenomenological model that 

describes the radiation of a two-level system at the thermal equilibrium. We consider 

here an ensemble of N two-level atoms with ground and excited states Ea and Eb, 

respectively, and such as Eb - Ea = ħω0. We denote the corresponding populations Na 

and Nb. The rate equation describing the time evolution of the excited population in 

interaction with a thermal field, with spectral density u(ω), is: 

𝑑𝑁𝑏

𝑑𝑡
= −𝐴𝑁𝑏 − 𝐵𝑏𝑎𝑢(𝜔0)𝑁𝑏 + 𝐵𝑎𝑏𝑢(𝜔0)𝑁𝑎 (1) 

1- Explain the meaning of the different terms occurring in equation (1) and indicate 

their respective units. Write the condition of population conservation (closed system). 

2- In the stationary regime, express the ratio Nb/Na at the thermal equilibrium. Then, 

find the temperature dependent general relation between A, Bba, Bab. First, consider 

the limit of high temperatures when kBT >> ħω0 to deduce that Bba = Bab ≡ B. Then, 

use this result and the fact that the field is thermal to write the equation connecting 

A and B. 

We remind the spectral density of the black body radiation as a function of ω: 

𝑢(𝜔) =
ħ𝜔3

𝜋2𝑐3

1

𝑒
ħ𝜔

𝑘𝐵𝑇 − 1

 

3- According to the time-dependent perturbation theory, the probability of transition 

between an initial state|𝑖⟩ with energy Ei and a final state |𝑓⟩ with energy Ef, when a 

perturbation W is applied for a duration t is: 

𝑃𝑖𝑓(𝑡) =
1

ħ2
|∫ 𝑑𝑡′⟨𝑓|𝑊(𝑡′)|𝑖⟩ 𝑒𝑖(𝐸𝑓−𝐸𝑖)𝑡′/ħ

𝑡

0

|

2

 

 

Express the transition probability per unit frequency dPab from a to b under the 

influence of the electric dipole operator related to an electric field 𝑬(𝜔)  linearly 

polarized along the z-direction. Assume the resonant approximation and discuss its 

validity. 

4- By integrating dPab over all the frequencies ω and by averaging the dipole 

orientation over all the directions of space, show that the time-dependent probability 

of transition is 

𝑃𝑎𝑏 =
𝜋𝑞2𝑟𝑏𝑎

2

3𝜀0ħ2
𝑢(𝜔0)𝑡 

We give: 

lim
𝑡→∞

[
sin(𝜔0 − 𝜔) 𝑡/2

(𝜔0 − 𝜔)𝑡/2
]

2

= 2𝜋𝑡𝛿(𝜔0 − 𝜔) 

5- Express the absorption probability per unit time. By drawing a parallel between 

the present probability and the phenomenological constant of the Einstein’s rate 

equations, deduce the expression for the spontaneous emission rate of the two-level 

system. 
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III- Mid-IR spectroscopy: Vibrational and rotational-vibrational spectroscopy 

Figure 2 shows the mid-IR absorption spectrum of CO in the gas phase, measured 

with poor spectral resolution. It shows two broad bands, one centered at 2143 cm-1 

and a second at 4260 cm-1. 

1- Convert these energies into wavelengths and 

energies in Joule. 

We will use cm-1 as the energy scale for the 

following questions. 

2- What is the selection rule for transitions 

between quantum states of an harmonic 

oscillator? Indicate possible reasons for the 

observation of the second absorption band at 

4260 cm-1. 

Figure 2: Absorption spectrum of CO in the gas phase 

Figure 3 shows the mid-IR transmission spectrum of 

HBr. The two central peaks are found at 2539.5 and 

2570.4 cm-1. 

3- Make a schematic drawing of the quantum states 

and energy levels involved in these transitions. 

Distinguish vibrational and rotational quantum 

states, and recall the precise formulas for their 

energies as a function of , the vibrational quantum 

number, and J, the rotational quantum number. 

 

4- Recall the selection rules for rotational transitions, and explain the origin of the 

observed peaks.  

5- Give the formula for the transition energies observed, as a function of the 

vibrational quantum ℏ𝜔 and of the rotational constant B.  

6- Determine B (in cm-1), and translate it into 𝐵̂ = 𝐵ℎ𝑐, the rotational constant in 

Joule. Here h is Planck’s constant (6.62 x10-34 Js) and c the speed of light in cm/s. 

The molar masses are MH = 1,008 g/mol, and MBr = 79,94 g/mol. Deduce the atomic 

masses mH and mBr, and determine the interatomic distance RH-Br from 𝐵̂.  

7- Determine the energy of the vibrational quantum ℏ𝜔 (in cm-1). Translate it into 

Joule, outline the formulas for determining the molecules spring constant k. 

8- How would the shape of the spectra change when the temperature is lowered to 

T= 4 K? How would the ratio 𝑅 =
𝑇(2539.5 𝑐𝑚−1)

𝑇(2377 𝑐𝑚−1)
 of the peaks in the center and at the far-

left change? Justify your answer. 

 

Avogadro constant: NA = 6,02 x1023 

Figure 3: Mid-IR transmission spectrum of HBr in 
gas phase. 
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Exam in “Light-matter interaction” 

S. Haacke & M. Gallart 

Test duration: 3 hours 

__________________________________________________________________________________________ 

I- Bloch vector representation of a two-level system 

1. The most general form of a two-level system eigenstate is: 

|𝜓⟩ = 𝑐𝑜𝑠 (
ϑ

2
) 𝑒+𝑖

Φ

2 |𝑎⟩ + 𝑠𝑖𝑛 (
ϑ

2
) 𝑒−𝑖

Φ

2 |𝑏⟩. 

We note 𝜎̂ the corresponding density matrix operator. 

Let us consider the so-called Bloch vector  𝑼(
𝑢
𝑣
𝑤
) , the coordinates of which are 

defined as 

{
 
 

 
 𝑢 =

1

2
(𝜎𝑎𝑏 + 𝜎𝑏𝑎)

𝑣 =
1

2𝑖
(𝜎𝑎𝑏 − 𝜎𝑏𝑎)

𝑤 =
1

2
(𝜎𝑎𝑎 − 𝜎𝑏𝑏)

 

By using the general expression of |𝜓⟩, compute the expression of u, v and w as a 

function of  and . Show that the extremity of  𝑈⃗⃗  ⃗ spans the surface of a sphere with 

radius ½. Draw a sketch displaying the angles  and . 

2. Now, we assume that |𝜓⟩  describes the eigenstate of a two-level system 

interacting with a sinusoidal electromagnetic field with angular frequency ω. The 

optical Bloch equations, in the absence of relaxations, are: 

𝜎̇𝑎𝑎 = −𝑖
Ω1
2
(𝜎𝑏𝑎𝑒

+𝑖𝜔𝑡 − 𝜎𝑎𝑏𝑒
−𝑖𝜔𝑡)

𝜎̇𝑏𝑏 = +𝑖
Ω1
2
(𝜎𝑏𝑎𝑒

+𝑖𝜔𝑡 − 𝜎𝑎𝑏𝑒
−𝑖𝜔𝑡)

𝜎̇𝑎𝑏 = +𝑖𝜔0𝜎𝑎𝑏 − 𝑖
Ω1
2
𝑒+𝑖𝜔𝑡(𝜎𝑏𝑏 − 𝜎𝑎𝑎)

𝜎̇𝑏𝑎 = −𝑖𝜔0𝜎𝑏𝑎 + 𝑖
Ω1
2
𝑒−𝑖𝜔𝑡(𝜎𝑏𝑏 − 𝜎𝑎𝑎)

 

where Ω1 is the Rabi frequency and ω0 is the Bohr frequency of the transition. 

Use the rotating frame transformation to eliminate the rapid time-dependence in 

the previous equation set. What is the physical meaning of this transformation? 

3. By use of the results obtained in question 2, write the differential equations that 

are obeyed by 𝑢 ̃, 𝑣 ̃and 𝑤 ̃, the three components of 𝑼̃ in the rotating frame. Show 

that 𝑼̃ undergoes a precession around a vector 𝜴 whose coordinates will be given. 

What is the frequency of this precession? 

4. We focus on the case where the electric field frequency is resonant with the Bohr 

frequency of the transition, with the system initially in the ground state |𝑎⟩. Give 

the equation of motion of 𝑼̃. How is the precession modified as compared to the 

case treated in question 3? What is its new frequency? What is the time evolution of 

the excited state population? 
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II- Optical pumping 

We will study in this exercise the effect of “optical pumping” of an atom. We will 

show that the selection rules governing the interaction of an atom with circularly 

polarized light lead, under continuous illumination of the ground-to-excited state 

transition, to a non-equilibrium distribution of population among the sub-levels of 

the ground state. 

We consider an atomic transition between a ground state of total angular 

momentum Ja = ½ and an excited state with total angular momentum Jb = ½. In 

the absence of incident light, the two ground-state sub-levels, which have the same 

energies, are equally populated: half of the atoms are initially in each of the states 

ma = −½, +½. The quantization axis is chosen to be along the z direction. 

  
Figure 1 : diagram of ground and excited states of the studied atom/ 

1. The population of atoms interacts with a σ+ circularly polarized light, the 

frequency of which is resonant with the Ja = 1/2 → Jb = 1/2 transition. Which one 

of the two possible excited states is populated through light absorption? Justify 

your answer by discussing the optical selection rules. 

2. We assume that atoms can relax from the excited state determined in question 2 

to their ground state by spontaneous emission. What are the possible final ground-

states of the relaxation? What is the polarization of the emitted light? 

3. Under continuous illumination with σ+ circularly polarized light a steady state is 

reached. Experimentally it is found that the incoming light is no longer absorbed. 

The progress towards the steady state can be monitored by measuring the 

transmission of the pumping light (see figure below). As a consequence, the σ+ 

circularly polarized emission goes to zero intensity. What does this suggest for the 

population of the ground state levels? Explain the absorption-emission process that 

is responsible for the evolution of the system towards this non-equilibrium optically 

pumped distribution in the ground state? 

 
Figure 2 : Temporal evolution of the transmitted light intensity. In the steady-state the absorption goes to zero, i.e. I=I0. 

 

 

Ja

Jb

mb = -1/2 mb = +1/2

ma = -1/2 ma = +1/2

t

I

I0
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III- Rotation-vibration spectrum Diatomic molecules 

The nuclear Hamiltonian of a diatomic molecule is written: 

−
ħ2

2𝜇

1

𝑟

𝜕2

𝜕𝑟2
𝑟 +

ħ2

2𝜇𝑟2
𝐿2 + 𝑉(𝑟) 

where r is the inter-nuclear distance, and µ is the reduced mass of the two-body 

system. L is the angular momentum operator and V(r) is the potential energy of 

interaction that is assumed to be harmonic. 

1. By looking for the solution of the corresponding Schrödinger equation under the 

form: 

𝜒𝑛,𝑙,𝑚(𝑟, 𝜗, 𝜑) =
1

𝑟
𝑢𝑛(𝑟)𝑌𝑙

𝑚(𝜗, 𝜑) 

where 𝑢𝑛(𝑟)  is the eigenfunction of a one-dimensional harmonic oscillator and 

𝑌𝑙
𝑚(𝜗, 𝜑) is a spherical harmonic, compute the expression of the energy eigenvalues 

En,l (assume that the centrifugal energy does not depend on r and is equal to its 

value evaluated at the average inter-nuclear distance r0). Identify the vibrational 

and rotational terms. Make a schematic diagram of the energy spectrum. 

2. Within the dipolar approximation, recall the selection rules for vibrational and 

rotational transitions, between the eigenstates labelled by n (harmonic oscillator) 

and l (rotation of a molecule with moment of inertia I). 

3. The figure below displays the infrared absorption spectrum of HBr. Label the 

absorption lines with vibrational and rotational quantum numbers. 

 
Figure 3 : Sketch of the vibration-rotation spectrum of HBr 

4. What is the origin of the decreasing peak intensity on both sides of the 

spectrum? 

5. Show that, for the intense peaks in the doublets, the rotational constant 𝐵 =
ħ2

2𝐼
  is 

equal to ≈ 1 meV. What is the value of the moment of inertia I? 

6. Calculate the reduced mass and calculate the interatomic radius R0 from the 

value of I. 

7. From the vibrational frequency ω, show that the force constant k is equal to 

379 Nm-1(use the first peak of the R band to determine the vibrational transition 

frequency ℏ𝜔). 

MBr = 80 u; MH = 1 u with 1 u = 1.66×10-27 kg  
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Exam in “Light-matter interaction” 

S. Haacke & M. Gallart 

Test duration: 2 hours 

__________________________________________________________________________________________ 

I- Coherent transients and π/2-pulses 

We consider a two-level system which stationary eigenenergies and eigenstates are noted 

{𝐸2, 𝐸1} and {|1⟩, |2⟩} respectively. We set 𝐸2 − 𝐸1 = ħ𝜔0, 𝐸1 being the ground-state energy. The 

system is in interaction with a quasi-resonant electromagnetic field 𝐸0𝑐𝑜𝑠(𝜔𝑡). The solution 

of the time-dependent problem is expanded on the basis of the stationary states: 

|𝜓(𝑡)⟩ = 𝑪̃𝟏(𝒕)𝑒
𝑖
𝛿
2
𝑡|1⟩ + 𝑪̃𝟐(𝒕)𝑒

−𝑖
𝛿
2
𝑡𝑒−𝑖𝜔0𝑡|2⟩ 

with 

{
𝑪̃𝟏(𝒕) = 𝒄𝒐𝒔 (

𝜴

𝟐
𝒕) − 𝒊

𝜹

𝜴
𝒔𝒊𝒏 (

𝜴

𝟐
𝒕)

𝑪̃𝟐(𝒕) = −𝒊
𝜴𝟏

𝜴
𝒔𝒊𝒏 (

𝜴

𝟐
𝒕)

 

where 𝜴𝟏 is the Rabi frequency, 𝜴 the generalized Rabi frequency and 𝜹 the detuning. 

1- Give the expressions of 𝜴 and 𝜹. 

For the remainder, we assume that the incident field is tuned exactly on resonance. 

2- Write the corresponding expressions of 𝑪̃𝟏(𝒕), 𝑪̃𝟐(𝒕) and |𝜓(𝑡)⟩. 

We consider the situation described in 2 but we suppose now that the electromagnetic field 

is applied under the form of a 
𝜋

2
-pulse switched on at t = 0, the system being initially in the 

ground-state. 

3- Define what a 
𝜋

2
-pulse is. Calculate the numerical values of 𝑪̃𝟏(𝒕)  and 𝑪̃𝟐(𝒕)  that 

characterize the new state of the system after the interaction with the 
𝜋

2
-pulse. What are the 

probabilities for the system to be in state |1⟩, in state |2⟩ ? Conclusion? 

The system is still in the state prepared in 3. The operator associated with the electric dipole 

moment is written 𝐷̂ = (
0 𝑑
𝑑 0

). 

4- Explain why 𝐷̂ does not present any diagonal terms. Calculate 〈𝐷̂〉, the expectation value of 

𝐷̂. How does it evolve in time? Use this result to explain what a coherent transient is. 

II- Optical transitions in a bulk semiconductor 

We plan to establish the optical selection rules for an optical transition, under the influence 

of an electric field 𝐸0𝑐𝑜𝑠{𝜔𝑡 − 𝑖𝑘⃗ 0 ∙ 𝑟 } , between the valence band (Ev, |𝜓𝑣,𝑘𝑣
(𝑟 )⟩ ) and the 

conduction band (Ec,  |𝜓𝑐,𝑘𝑐
(𝑟 )⟩) of a bulk semiconductor that presents a direct bandgap 

located at 𝑘⃗ = 0. For simplicity, we assume that the potential seen by electrons in the crystal 

lattice is invariant under a translation of vector 𝑎  along the three directions of space. 
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1- What is a direct bandgap semiconductor? What is an indirect bandgap semiconductor? 

The periodic parts of the wave-functions are noted 𝑢𝑣,𝑘⃗ 𝑣
(𝑟 ) and  𝑢𝑐,𝑘⃗ 𝑐

(𝑟 ) for the valence band 

and the conduction band respectively. 

2- Write the total wave-functions |𝜓𝑐,𝑘𝑐
(𝑟 )⟩ and |𝜓𝑣,𝑘𝑣

(𝑟 )⟩ associated with the electronic bands 

considered here. What are the properties of 𝑢𝑣,𝑘⃗ 𝑣
(𝑟 )and  𝑢𝑐,𝑘⃗ 𝑐

(𝑟 ) ? How are expanded the 

corresponding energies Ec and Ev in the reciprocal space ? 

We denote |𝑊𝑐𝑣|  the matrix element of the dipole moment operator −𝑞𝐸0𝑟̂  ∙ 𝑒𝑥𝑝{−𝑖𝑘⃗ 0 ∙ 𝑟 } 

evaluated between |𝜓𝑣,𝑘𝑣
(𝑟 )⟩ and|𝜓𝑐,𝑘𝑐

(𝑟 )⟩. 

3- What is the general definition of optical selection rules associated with the transition 

between two electronic states? 

4- Describe qualitatively the main steps of the procedure that is used to write |𝑊𝑐𝑣| in a 

factorized form: 

|𝑊𝑐𝑣| ∝ 𝑓(𝑘⃗ 𝑣 , 𝑘⃗⃗  ⃗
𝑐) × 𝑔 (𝑢𝑣,𝑘⃗ 𝑣

, 𝑢𝑐,𝑘⃗ 𝑐
)  

Where 𝑓(𝑘⃗ 𝑣 , 𝑘⃗⃗  ⃗
𝑐) and 𝑔 (𝑢𝑣,𝑘⃗ 𝑣

, 𝑢𝑐,𝑘⃗ 𝑐
) will be made explicit. What properties of the wave-function 

enable one to obtain this result? What approximations are made? 

We assume that the wavelength of the incident light is in the visible spectral range. 

5- Discuss the possibility of a transition between the valence band and the conduction band 

as a function of the initial and final electronic wave-vectors. What are the practical 

consequences when comparing optical properties of indirect and direct bandgap 

semiconductors? 

We are now interested in a transition occurring at 𝑘⃗ ≈ 0. In this case, 𝑢𝑣,𝑘⃗ 𝑣
(𝑟 )and  𝑢𝑐,𝑘⃗ 𝑐

(𝑟 ) are 

eigenstates of the total angular momentum operator: 𝑢𝑣,𝑘⃗ 𝑣=0⃗⃗ (𝑟 ) = |𝑗; 𝑗𝑧⟩ and 𝑢𝑐,𝑘⃗ 𝑐=0⃗⃗ (𝑟 ) = |𝑠; 𝑠𝑧⟩. 

The incident light is circularly polarized in the plane perpendicular to the direction of 

quantization. The initial state is a valence state characterized by|𝑗; 𝑗𝑧⟩, the final state is a 

conduction state characterized by |𝑠; 𝑠𝑧⟩. 

6- What are the possible values of 𝑠𝑧 as a function of 𝑗𝑧 and of the light helicity? 

The valence band presents a p-like (ℓ = 1) symmetry while the conduction band is s-like 

(ℓ = 0). This results in the existence of 6 valence states and 2 conduction states. 

7- Draw a sketch of the different states at 𝑘⃗ = 0 with the corresponding values of |𝑗; 𝑗𝑧⟩ and 

|𝑠; 𝑠𝑧⟩. Indicate the allowed transitions in the case of a circularly polarized light. 
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Exam in “Light-matter interaction” 

Test duration: 2 hours 

__________________________________________________________________________________________ 

I- Course evaluation 

1- Vibronic transitions 

Figure I-1 presents absorption and emission spectra of a molecule for different values of the 
so-called Huang-Rhys factor S. 

S = 0.5 S = 1 S = 2 

   
Figure I-1 

What are vibronic transitions? What are the quantum states implied in these transitions? 
Draw a sketch of these states. What is the form of the related wave-functions? Give an 
outline of the calculation of the transition probability. What is the Franck-Condon principle? 
What the spacing between the sharp lines in the spectrum is related to? What is 
characterized by the Huang-Rhys factor S? Comment the evolution of spectra with S. What 
would the spectrum look like if S = 0. 

2- Rotation vibration 

Figure I-2 shows the vibration absorption spectrum of HBr 

 

Figure I-2 

What are the molecule states that are implied if the transitions presented in figure 2. How 
are they calculated? Plot a sketch of these states labelled with the corresponding quantum 
numbers. Detail the physical meaning of these quantum numbers. What are the eigen 
energies? What is the condition for observing optically induced rotation-vibration transitions 
in a diatomic molecule? When this condition is satisfied, what are the optical selection 
rules? Draw the corresponding allowed transitions in the previous sketch of the energy 
spectrum. 



II- Exercise 

Quantum wells with infinite barrier – selection rules for dipolar transitions 

We consider a heterostructure made of an alternation of nanometric layers of semiconductor 
materials with different bandgaps. This artificial edifice presents discontinuities in the band 
profile where the high band gap material defines barriers along the growth direction z (cf. 
figure II-1). Electrons and holes are confined in the so-formed quantum wells, but they are 
free to move in the (x,y) plane. Electrons are confined in the QW formed in the conduction 
band and holes form similar quantum states in the valence band of the low band gap 
material. 

 

Figure II-1 

a) Justify that electron and hole wave-functions can be approximated by the solutions 
of the stationary Schrödinger equation of a QW with infinite barriers: 

 

 

b) The effective mass of electrons me* is smaller than the one of hole mh*. Draw the 
energy levels of electrons and holes. 

c) Compute the selection rules for interband transitions between the highest hole 
subband nh=1 and all the electron levels ne ≥ 1. 

 

d) Under the application of an electric field, the QW potential energies change as 
indicated in the fig. II-2. 



 

Figure II-2 

a. Discuss qualitatively how the E-field induced asymmetry will change the 
shape of the envelope functions j(z) and consequently, the selection rules. 

b. Will the dipole moment of the nh=1 to ne=1 transition increase? 

c. Will new transition appear in the absorption spectrum? 
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Exam in “Light-matter interaction” 

S. Haacke & M. Gallart 

Test duration: 2 hours 

__________________________________________________________________________________________ 

I- Atom and two-level system: lifetime of an exited state 

We consider an atom, located at 𝒓 = 𝒓𝟎 , approximated by a two-level system whose 

stationary eigenenergies and eigenstates are noted {𝐸1, 𝐸2} and {|1⟩, |2⟩} respectively. We set 

𝐸2 − 𝐸1 = ħ𝜔0, 𝐸1 being the ground-state energy and 𝜔0 > 0. The system is in interaction with 

a quasi-resonant electromagnetic field 𝐸0𝑠𝑖𝑛(𝜔𝑡). The matrix element of the electric dipole 

Hamiltonian between |1⟩ and |2⟩ is 𝑊21 = −⟨2|𝑫̂. 𝜺|1⟩𝐸(𝒓𝟎) = −𝑑𝐸(𝒓𝟎) = ħΩ1. 

1- What is the physical meaning of  Ω1? Why does W21 depend only on 𝒓𝟎 and not on the 

spatial extension of the atom? 

2- The system is initially in the ground state |1⟩ . Use the first-order time dependent 

perturbation theory to express the probability P12(t, 𝜔) for the atom to be in the state |2⟩ after 

an interaction of duration t with the field. You will use the resonant approximation, discuss 

its validity. 

3- Draw a sketch of 𝑁2 ∝ P12(t, 𝜔) as a function of ω, and for a given value of t. What is the 

physical cause of the broadening ∆𝜔 of this curve? Discuss its evolution with the interaction 

time t.  

4- Now, to take into account the lifetime of the excited sate, we consider that the population 

𝑁2 of level |2⟩ can decay to level |1⟩ by an irreversible coupling to a continuum of states. We 

are interested here neither in the nature nor in the modeling of this continuum, but only on 

the consequence of its existence on the population of the excited state. So, we suppose that 

the EM-field is switched off at time 𝑡 = 0, so that  𝑁2(𝑡) evolves only because of the coupling 

with the continuum with an initial condition 𝑁2(0) = 1 at 𝑡 = 0. Supposing that the decay 

probability per unit time is constant and denoted 𝛤, write and integrate the rate equation to 

obtain the explicit form of the function  𝐹(𝑡) that expresses the evolution of 𝑁2(𝑡) in the 

absence of absorption. 

5- We come back to the full problem where the population 𝑁2 is fed by light absorption from 

the ground state with probability P12(t, 𝜔) and decays with a probability per unit time 𝛤. 

Show that, in the stationary regime, 𝑁2 = ∫ P12(t′, 𝜔)
+∞

0
 𝐹(𝑡′)𝑑𝑡′ ∝

1

2

Ω1
2

(𝜔−𝜔0)+𝛤2 . Plot 𝑁2 as a 

function of ω. Comment the differences between this solution and the result obtained in 

question 3. What is the physical cause of the resonance broadening?  

6- The same problem can be solved with a non-perturbative treatment. A similar reasoning 

leads to 𝑁2 ∝
1

2

Ω1
2

(𝜔−𝜔0)+𝛤2+Ω1
2. What new parameter acts now on the width of the resonance? 

What are the limiting values of 𝑁2 when (𝜔 − 𝜔0) + 𝛤2 ≫ Ω1
2 and (𝜔 − 𝜔0) + 𝛤2 ≪ Ω1

2. For large 

values of Ω1 , what physical process appears here that was absent in the perturbative 

description? Comment. 
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7- Use your answers to questions 5 and 6 to illustrate the different results for N2 obtained 

with the perturbative and the non-perturbative methods, and discuss when one or the other 

should be used. 

II- Optical transitions in a two-dimensional quantum well 

A- Square quantum well 

Growth techniques such molecular beam epitaxy allows to synthetize semiconductors 

quantum wells, made of nanometric layers of compounds with different bandgap energies, in 

which electrons and holes are confined along the growth axis. The carriers are free to 

propagate in the (𝑥, 𝑦) plane but are submitted to a square potential well in the z-direction 

that arises from the band discontinuities between the involved materials (Figure 1). One can 

show that the wavefunctions can be written 

|𝜓𝑐,𝑘𝑐

𝑛 ⟩ = 𝑁𝑒−𝑖𝑘⃗ ∥
𝑐∙𝜌⃗⃗  𝑓𝑐

𝑛(𝑧) 𝑢𝑘𝑐
(𝑟 ) and |𝜓𝑣,𝑘𝑣

𝑝
⟩ = 𝑁𝑒−𝑖𝑘⃗ ∥

𝑣∙𝜌⃗⃗  𝑓𝑣
𝑝
(𝑧) 𝑢𝑘𝑣

(𝑟 ) 

for the conduction and valence bands respectively, where the index n(p) is the quantum 

number associated with nth(pth) confined state in the well while 𝑓𝑛(𝑧) (𝑓𝑝(𝑧))is the so-called 

envelope function that describes the spatial localization of the corresponding charge carrier 

in the quantum well. To simplify the problem and to handle analytical expressions, we 

choose to make the assumption that the barrier height is infinite. 

 
Figure 1 

1- The envelope function introduced above is the solution of the Schrödinger equation of a 

single particle in a square quantum well with infinite barriers. Write and solve the equation 

to express 𝑓𝑐
𝑛(𝑧)and  𝑓𝑣

𝑝
(𝑧) with the right boundary conditions. Deduce the eigen-energies 

𝐸𝑐
𝑛(𝑘⃗ ∥

𝑐) and 𝐸𝑣
𝑝
(𝑖𝑘⃗ ∥

𝑣) of electrons and holes, respectively. 

2- We plan to establish the optical selection rules for an optical transition, under the 

influence of the electric field of light 𝐸0𝑐𝑜𝑠{𝜔𝑡 − 𝑖𝑘⃗ 0 ∙ 𝑟 }, between a state 𝐸𝑣
𝑝
(𝑘⃗ ∥

𝑣) in the valence 

band and a state 𝐸𝑐
𝑛(𝑘⃗ ∥

𝑐) in the conduction band of this quantum well. By following the same 

procedure as the one used in the lecture for direct-bandgap bulk semiconductors, express 

the quantum well selection rules related to an initial state  (𝑝, 𝑘⃗ ∥
𝑣) and a final state (𝑛, 𝑘⃗ ∥

𝑐). 

Highlight the fact that some transitions are strictly forbidden for reasons of symmetry. 

B- Quantum well in a static electric field  

Under the application of an external static electric field, the QW potential energies change as 

indicated in the Figure 2. 
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1- Describe qualitatively the new profile of the envelope functions 𝑓𝑐
𝑛(𝑧)and  𝑓𝑣

𝑝
(𝑧). Draw a 

sketch of these wavefunctions for the two first confined state in the quantum well. How are 

the optical selection rule that connect n and p modified? Do any forbidden transitions still 

exist? 

 

Figure 2 

2- We wish to draw a parallel between this problem and the optical properties of diatomic 

molecules as they were described during the lecture. Draw a sketch of the ground and 

excited electronic states of a diatomic molecule and indicate how optical transitions occur 

between vibronic states. Give a picture of the possible spectra for absorption and emission 

of light. 

3- By comparing your answers to B-1 and B-2, can you deduce any similarities between the 

optical transitions in a quantum well submitted to a static electric field and the optical 

transitions between the vibronic states of a diatomic molecule. 


