Phenomenological models of light-matter
Interaction

September 20, 2022

Contents

1 Classical model of an atomic dipole - Drude-Lorentz model 2
1.1 Freeevolution . . . . . . . . .. ... ... ... 2
1.2 Forced motion . . . . . . . .. ... 3
1.3 Study of the real and imaginary partsof x . . . . . . .. ... 5
1.4 Refractiveindex . . . . . . . . . . ... 7
1.5 Energy transfer . . . . . ... ... 8
1.6 Propagation and attenuation . . . . . .. .. .. ... ... 10
1.7 Conclusion . . . . . . . . . ... 12

2 Einstein coefficients 12
2.1 Rateequations . . ... ... ... oL 13
2.2 Relations between coefficients . . . . ... .. ... ... ... 14
2.3 Time evolution of populations . . . . . . ... ... ... ... 15
2.4 Absorption coefficient . . . . . ... ..o 17



The propagation of electromagnetic waves in matter leads to phenomena such
as reflection, transmission and absorption. These quantities can be expressed
as a function of the linear dielectric susceptibility x (w) that connects the
applied electric field E and the polarization P.

P (w) =eoX (w) E (w)

The polarization P arises from the interactions between E and electric charges
in matter. Modeling these interactions is necessary to express the depen-
dency of ¥ with w. In this first chapter, we will review two historical and
phenomenological models of light-matter interaction.

1 Classical model of an atomic dipole - Drude-
Lorentz model

We consider a one-electron atom where both the electron and the nucleus
are supposed to be point particles. Because of the large difference in their
masses, we make the assumption that the nucleus is to be at rest while the
electron is bound to the nucleus by an elastic force:

F = —mwjr

where m is the electron mass, wy is the natural angular frequency of the
oscillator and r the displacement of the electron from its equilibrium posi-
tion. The system is equivalent to the spring problem in mechanics. The
corresponding atomic dipole p is given by:

p=gqr

where ¢ the electronic charge.

1.1 Free evolution

At zero electric field, the classical equation of motion is:
mi = —mwix — 2myd

the term —2m~1 is an effective viscous friction that describes the damping
of the dipole that can occur by collisions, interaction with other dipoles or
radiation (coupling to external fields).

qF + 27yqt + quiz = 0
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p+27p+wip =0

The characteristic polynomial of this equation is:
A4 29\ + Wl

A =492 — 4}

We assume that v < wp so A < 0 and:

A= —vy+iy/wi—92
p=Ae etV t | B et pmivei
p must be real so B = A*
p=ec [A etVE L gr e t]
=e " 2Re <A etiVwi t)

=2|A| e " cos <\/w8 -2 t+90)

If v < wp:

p~poe cos(wyt+ )

The dipole oscillates at a frequency close to the natural frequency wy and is
damped with a characteristic parameter that is the inverse of a time.

1.2 Forced motion

In the presence of a sinusoidal electric field F (t) = Eycoswt, the dipole

equation becomes:
2

0
cos wt

o q
B+ 2P+ wip =

Given that the wavelength of light is large compared to the characteristic
dimensions of atoms, we neglect the spatial dependence of the field and look
for the solution in the form:

p(t) =R (s(w)e ™)



. 2E .
%(w) e—zwt (_w2 o 22’7&) + wg) — ue—zwt

The dependence of the atomic dipole with w is given by

Jlw)=L !

E
m (wg — w? — 2inw)

With N atoms per unit-volume, the macroscopic polarization is:

¢ 1
P ()= NL
(@) m (Wi — w? — 2iyw)

Eo

On the other hand, the complex linear susceptibility y is defined by:
P (w) = eoX (w) Ey

Ng? w? wa
= = 0
X(w) gomwi (wg — w? — 2iyw) x (0)

As expected, x is a complex number:
X=X +ix"=|x|e™

The fact that we choose a minus sign in the argument of the complex expo-
nential enable us to write

P (t) = &o |X| Eq cos (wt + )

The modulus and the argument of y are easy to calculate:

2
. W
Xl = x(0) =
\/(wg—oﬂ) + 4y2w2
1
2
tango = —X—/:—%
% wi —w

These two quantities are ploted in the figure 1. When w = wy, the amplitude
is maximum and the dipole oscillates in quadrature with the field. This is
the resonance phenomenon.
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Figure 1: Amplitude and phase shift of the forced motion of the atomic
dipole.

1.3 Study of the real and imaginary parts of x
In this paragraph, we study in detail the real and imaginary parts of .

V) = () BT (o) D
(Wg — w?)? + 472w2 (WE — w?)® 4 472w?
dy’ o (Wi — w?)” — 4y

The derivative is zero when:
(wg —w? + 27w0) (wg —w? — 27w0) =0

The roots are:
W12 = Wo 1+ 21
Wo



if 7 < wp, the Taylor expansion (1 + x)* = 1+ ax gives:
Wio ™~ wo 7y
we subsitute w by wi, = wj & 27w in the expression of x’

2 2
V) =x Ol T

2vwo

/ 2
X (w1) =x(0)w
) = x(0) ? (29w0)” + 472 (wE — 2yw)

2ywo 2vwo
=y (0)w? ~ x (0)w?
X (0) O4y202 + 4722 —  8v°wy x(0) 047202 + 4720}
——
third order in vy
Wo
— v (0) 2
x (0) -
The same calcultion with wy gives:
Wo
/ — O -v
X (we) X ( )47
Imaginary part
2yw
" 2
X (W) =x0)w
) (0) ey (w2 — w?)” + 472w?
When w is close to wy and 7 < wy:
Wi —w? = (wo +w) (Wo — w) =~ —2wp (w — wp)
2ywq
" (W) = x (0) w?
27wo x (0) Yo
= x (0) 2 7 2 2
4(w—wp)” + 4y 2 (w—wo) "+~
w 1
X' () = x (0) 22 2
Y W — Wwo
- ()
X" (wo) Y

Around wy, X" (w) has a lorentzian shape centered at wy. The function has
its maximum divide by 2 when:

"
X// (w) _ X (2(*]0)
This condition is satisfied when
w=wyEy
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Figure 2: Diagram of the imaginary (top) and real (bottom) parts of the
dielectric susceptibility.

1.4 Refractive index

We remind that

& (W) =1+ ¥ (w) =n?

The real and imaginary parts of ¢, are

el =n?— K?
el = 2nk

Solving this system allows to extract the real and imaginary parts of:

n(w) = n(w) + ik(w)

We can then model the coefficients of reflection R(w) and reflection T'(w) of
a material in the vicinity of a resonance thanks to the Fresnel relation.
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Figure 3: The reflection spectrum of a single resonance with zero and finite
damping for normal incidence.

1.5 Energy transfer

In this part, we describe how the energy from the field is used in matter. We
start from the Maxwell-Ampeére equation in matter:

oD
H=j+—
V x J—l-at

B
with H= — — M and D = ¢gE+ P. We express the dot product E-j which

has the dimension of a power per unit-volume:

oD
E-i=E. H_-E. =
] V X% 5

We use the vectorial relation:

V-(AxB)=(VxA)-B-—A-(VxB)



A (VxB)=(VxA)-B-V-(AxB)

E-(VxH)=(VXE)-H-V-(E x H)

We obtain: 5D
E-j:(VxE)-H—V-(ExH)—E-E
By using the Maxwell-Faraday equation, we find:
0B oD
E-j=— H-V-(ExH) -E - —
1= (B x H) i
Let’s rewrite each term:
oD 0 OE OoP
E-— =E - —(¢gE+P)=¢E- — +E. —
ot g 0BT P) =&k Fr B
g0 OE? oP
S i E.—
2ot o

OB B 0B 1 0B* g 0B?

Ot e Ot 2u Ot 2 Ot
The product E x H is the Poynting vector. In a non-magnetic material, it
becomes:

1
ExH=—ExB=¢cExB
Ho

. €0 8E2 5002 8B2 2 oP
860 2 . 2 oP
— Y E+B]=-E j-V-(60*(ExB) —E - —
pi2 B+ Bl =V (e0’E x B) ot

let’s analyze each of these terms:

€
o <0
* o |

unit volume.

E + ¢?B| is the time derivative of the electromagnetic energy per

e E - jis the power given to free charges.

e V - (50c’E x B) is the power radiated through the surface 3 that en-
closes the considered volume.

e E. %—1; is the power needed to modify the polarization.
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oP
Let calculate the time average of E - - We write the field and the polar-

ization in complex notation:

E, . ,
E(t) = 706_Wt +c.coet P(t) = @e‘m + c.c.
aP o w —iwt w * wt
g ~ P 5 we
0 o w — 24wt w 7L 24wt iw * iw *

When we calculate the time average, the terms in 2w have a zero contribution,
so we have:

oP iw . o iw .
=2 Re{ (%Eoé‘o (X/ — iX//) ES) }

opP 1
<E . E> = §€OWX” |Eq|°

The power transferred to the medium to modify the volume polarization is
proportional to the imaginary part of the dielectric susceptibility.

1.6 Propagation and attenuation

Let us now calculate the mean value of the Poynting vector. As we are
interested in propagation, we write the field with its spatial dependence:

E = EO ezkz efzwt

The real field is:

With k = 25
C

SR

A calculation identical to that carried out previously with the complex ex-
pressions of the fields gives us:

o 2 _6002 ~ =
S=e¢?(ExB —TRe<E><B>
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We then use the Maxwell-Faraday equation:

0B
VXE=——
8 ot
which gives, for monochromatic plane-waves :
ik x E = iwB
hence the expression for B:
- k-
B=—xE
w
6002 ~ ~\ * 6002 —— ~ ~
(8) = T-Re [Bx (kxB) | = 5= Re |(B-B') k'~ (E k') B
2w 2w
€0C? s €0C? W
(S) = E“Re (k) = —E*—u

2w w c
where n is the real part of the refractive index and u a unit vector.

(S) = n@Eg exp{ (—281%')} u = (Sp) exp{ (—ZC—umz)} u

2 c c

We write that the energy radiated by the field is damped according to the
law:

(S) = (So) exp{(—az)} u

where « is the absorption coefficient. When the angular frequency w of the
field is resonant with the natural frequency of the atomic dipole:

We also recall that:

we have:

We deduce that .
W9 oW e _wX!
c c2n cn

at the resonance:

w Ng* w 1 Ng?
X (wo) = x(0) o2 = —T 20 -~

27 eomwl2y  2eqmuwpy

hence the absorption coefficient:
1 N¢ w
2 £0MNCy Wy
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1.7 Conclusion

This simple model, when it is compared with experiments, is in good agree-
ment with measurements (for the modeling of the refractive index, the re-
flectance and absorption coefficients...). The agreement can be very good if

e wy is a frequency resonnance that is determined experimentally

e the susceptibility is multiplied by an adjustable dimensionless param-
eter called "oscillator strength” and if the expressions related to the
different resonance frequency of the atom are summed. We obtain a
phenomenological expression of x(w):

~ N¢ fi
X(w) = gom zZ: w? — w? — 2iyw

2 Einstein coefficients

The Einstein model of light-matter interaction is a phenomenological model
that describes the radiation at the thermal equilibrium. Based on thermo-
dynamical arguments, it predicts the stimulated emission of light which en-
ables the amplification of a light field in matter and, hence, the laser effect.
Einstein coefficients are a simple limiting case of the semiclassical model of
light-matter interaction.

E. e
A
E.— Eg = liw Begu(w)
Eg g

Figure 4: Two level system.

12



2.1 Rate equations

We suppose that the field is contained in a box. We will neglect any coherence
or phase information of the radiation and assume it presents a broad thermal
spectrum. The spectral density is denoted u (w). wu(w)dw is the energy
per unit-volume between w and dw. The energy density is assumed to be
uniform across the volume of the box. The total electromagnetic energy per

unit-volume is:
—+oo
u = / u(w) dw
0

u (w
The density of photons in the frequency band between w and dw is ()

The light-field interacts with atoms with two discrete levels |e) and |g) with
energies F, and E,, respectively. Because of the coupling to the electromag-
netic field, an atom can absorb one photon and goes from the ground state
lg) to the excited state |e), or emit one photon to relax from the excited
state |e) to the ground state |g). The model is a classical set of rate equation
with an adhoc quantization of the radiation. Three different processes are
are involved:

Spontaneous emission

The atom decays spontaneously from the excited state |e) to the ground state
|g) by emitting a photon. This emission does not require the presence of the
external applied field to occur and, consequently, does not depend on u (wp).

dN,

— —AN,
dt c

spon
A is a probability per unit time.
Absorption

The atom absorbs radiation at frequency wy and makes a transition from |g)
to |e):

dN,
°| = Bgeu (wo) N,
dt abs
The absorption probability is proportionnal to the spectral density at the

atomic frequency wg. Bge is in J™h.m3.s72.

Stimulated emission
This process was introduced by Einstein to take into account the thermal

equilibrium of the atom with the radiation field. An incoming photon induces

13



the desexcitation from |e) to |g) and therefore, the emission of another photon
with frequency wy.

dN.
dt

As for absorption, the probability of stimulated emission is proportionnal to
the spectral density at the atomic frequency wy.

Taking into account the three different processes, the rate equations
writes:

= —Begu (WO) ]\/ve

stim

dN,
Pl —AN, — B.yu (wo) Ne + Byeu (wo) Ny
N, + N, =1

2.2 Relations between coefficients

N — .

In the stationnary régime <

0= —AN, — Begu (wo) Ne + Byeu (wo) Ny

and:
N, Byeu (wo)

N, A+ Beyu (wo)

The populations of the two levels are in thermal equilibrium and must obey
the Boltzmann law:

ool (EB2)) - eo{ (1)}

where kg is the Boltzmann constant. Concerning the spectral density, it is
given by the Planck law:

8rhud 1 —3
u(v) = 3 exp{(hwy/kgT)} — 1 )
1 87h rwo\3 1 = ey !
ulwo) = 55" (%) exp{(hwo/kpT)} =1 723 exp{(hwo/kpT)} — 1

At high temperatures kgT >> hwo and e™0/k87 ~ 1. The population ratio
given by the Boltzmann law becomes:

%—ex _ fu ~ 1
N, TPV ke ) [
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and:
1

ehl/()/kBT — 1
tends to very large values because the denominator is close to zero. The
consequence is A < Begu (wp) and A < Bgeu (wp). We can write:

Ne  Bgeu(wp) .

Ny B Begu (wo)

We conclude that

Going back to the general case:

vt o))

s ()}

A 1

u(wo) = &
S

by equaling this expression with the general expression of u (wy) given by the
Planck’s law, we find:

s 1 A 1
7263 exp{(hwo/kpT)} — 1 B exp{(hwo/kpT)} — 1

u(wo) =

We deduce that:

A_ hwg

B w23

2.3 Time evolution of populations

Because the system is closed we have N, + N, = N and:

dN.
dt

— — AN, — Bu (wy) N, + Bu (wo) (N — N,)

dN,
dt

+ (A4 2Bu(wp)) Ne = NBu (wp)

15



It can be integrated by multiplying by e(A+2Bu(wo))?

dN,
= e(AJrZBu(wO))t + (A +2Bu (wO)) Nee(A+ZBu(wo))t — NBu (wO) e(AJrQBu(wO))t

e(A—l—QBu(wo))t

Ne (A+2Bu(wo))t _ NB - _.c
‘ u (o) A+ 2Bu (wp) *

Bu (wo) 3
Ne - N C (A4+2Bu(wo))t
A+ 2Bu (wo) ee

We make the assumption that, at ¢ = 0, the system is in the ground state:

Bu (wp)

:N—
0 A+ 2Bu (wo)

+C

Bu (wp)

C=- A+ 2Bu (wp)

and:

Bu (wp) _
N(t) = N——— 2L [1 — o~ (A+2Bulwo))t
®) A+ 2Bu (wy) [1-e ]

When t — 400, the system reaches a steady state and:

Bu(wo) N (wo)

Nelh) = N B @o) ~ N AT + 2u (@)

where we set ug = A/B, the steady state populations become:

_ u (wo)
Ne(oo) = NuS + 2u (wp)

and:
us + u (wo)

Ny(o0) = N — N(o0) = NuS—i—Q—u(wo)

e For weak field intensity, A > 2Bu (wp) and:

Ne(t) ~ Ngu (wo)

The population of the excited state is proportionnal to the excitation.
The system is in the linear regime.
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e For intense fields, A < 2Bu (wp) and:

N

N
The population of the excited state tends to the limit value —, there

is a saturation of the excited state population at high intensities. The
system is the non-linear regime.

17
50.75-
E N
‘g g
§ 05
d
5
=
Q.
£0.25- No
0 ;\ T T T T T T 1
0 2 4 6 8 10

u/us

Figure 5: Population of the excited state at long delays as a function of
Bu(wo)
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Chapter 2: Single atom in a classical
electromagnetic field

October 11, 2022
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1 Introduction

In this chapter, we develop how to model the interaction of a quantized atom
with a classic E.M-field. In a first part, we show how to derive the Hamilto-
nian from the classical one and we discuss the choice of the gauge. Then we
calculate the probability by a pertubative treatment. We also present how
to take phenomenology into account the finite lifetime of an excited state.
Finally, we treat the specific case of the interaction of a two level system that
gives rise to Rabi oscillations.

2 Hamiltonian

2.1 Classical Hamiltonian and the Coulomb Gauge

We start from the classical Hamiltonian of a charged particle in an electro-
magnetic field:

1
H(I‘7 t) - %[p - qA(I‘, t>]2 + qU(I‘, t)
where A is the vector potential and U the Coulomb potential. There exists
an infinity of potentials {A(r,t),U(r,t)} corresponding to the same values
of the E.M-field. We remind that:
OA(r,t
E(I‘, t) = —# - VU(I', t)
B(r,t) =V x A(r,1t)

These fields are invariant under the gauge transformation:

Ulr,t) =Ul(r,t) — %@(r,t}

A'(r,t) = A(r,t) + VO(r,t)

were ®(r,t) is an arbitrary scalar function. The Coulomb gauge corresponds
to the condition:
V.-A(r,t)=0

or, in Fourier space:

k- Ak, t) =0

The vector potential is purely transverse:

A(r,t) = A (r,t)

2



Consequence for the expression of E(r,?):

A t
E(r,t) = — ag_ir,) —VU(r,t)
T,_/ ?"?

The condition for E(r, ) to be a tranverse field is:
V. E(r,t)=0
Because the curl of a gradient is always zero:
V x (VU(xr,t)) =0
VU(r,t) is necessary longitudinal and:
E,(rf) _8Ag§jr, t)
E|(r,t) = -VU(r,t)
The longitudinal component E(r,¢) is given by:
r—r

1

E|(r,t)=— [ & p(r',t) ——
||( ) ) 47T60 r p( ) )|I'—I'/|3

Where p(r',t) is the charge distribution. The charges responsible for the

existence of U(r,t)), and consequently E(r,¢)) are sufficiently far away from

the studied system to satisfy:
VU(r,t) =0

Since a constant potential has no physical effect, we set U(r,t) = 0. E, can
be written in the form of a plane-wave:

E, = Eycos (wt — k, - 2) ey

The magnetic field is calculated using the Maxwell-Faraday equation:

%B:—VxE:kz~Eocos(wt—kZ~z) ey

k.
B=-VxE=—"FEjcos(wt—k,-z2) e,
w

and finally, taking into account that:
(‘3AL (I‘, t)

E(r,t) = o

E
A:——Osin(wt—kz-z) e,
w

The Hamiltonian finally is finally written:

1

H(r,t) = 5—[p — qA(r, 1)



2.2 Quantum Hamiltonian

The Hamiltonian of a single electron bound to an atom in the absence of
external fields is given by:

P )
HQ = % —|— V(I‘)
where V(r) is the usual Coulomb interaction binding the electron to the

nucleus, r = |r| and p = —ihV. We assume that energy eigenstate |n) of
Hy, satisfying the time-independent Schrodinger equation:

Hy|n) = By n)

are known. In the presence of external field, the Hamiltonian is modified to

H(it) = %[i) —qAE, )]+ V()

~ 2 ~ 2
2 p q ~ A A A QAL(r,t)
A1) = 2 LA )+ AL
(1.0) = 2 V)~ 5 (b ALl 0) + As(E1) D)+ g
A~ 2 PN 2
o (a . . A (r,t
©0) = 2 v - Lp AL+ 2D
—
Hop

H, is the usual stationnary Hamiltonian that describes the motion of a
charged particle in a static Coulomb potential. The interaction term is

DAL 1)
2m

——p-A(r,t)+¢q
m

In the following we will focus on linear optical properties and will make
the assumption that the interaction term is small when compared to H,.
Then, the second term of the interaction Hamiltonian being quadratic with
A (r,t) will be neglected with regards to the linear term.

In the Coulomb gauge, the applied field is completely characterized by its
vector potential A (T,1).

IBecause A | is not an oprerator there is no commutation issues.



Long wavelength approximation

In atom-light interactions, the light wavelength A is usually very large when
compared to atomic dimensions. For the hydrogen atom, typical emission
and absorption lines have wavelengths in the range of several hundredth of
nanometers while the atomic size is ag ~ 0.053 nm (Bohr radius of hydrogen
atome). The amplitude of the external field is practically constant over the
spatial extent of the atom and:

AL(IA‘,t) ~ AL<I'0,t)

where rg is the position of the nucleus. This is what we call Long wavelength
approximation.

2.3 Electric dipole Hamiltonian : Goppert-Mayer Gauge

Maria Goppert-Mayer (1906-1972) was a german born american physicist.
She was the second woman to get the Nobel prize in physics for proposing
the nuclear shell model of the atomic nucleus.

The choice of the present gauge enable to write the interaction Hamiltonian
in a form that is similar to the expression of the energy of a classical dipole.

W=-d-E

Starting from the Hamiltonian in the Coulomb Gauge 2:

A1) = i[p g ALE D+ V()

We use the usual gauge transformation:

' 9 o
U'(t,t) =0 — E@(r,t)

(1) = AL (r,t)+ VO(5,1)
The Goppert-Mayer gauge consists in choosing:
¢ (t,t) = —( —19) - Ay (1o, 1)
0

) = (f‘ — I'()) . aAL(ro,t)
A'(r,t) = A (F,1) — AL (ro,t)

<
~~
>
~




Moreover, we have seen that, in the Coulomb gauge, the electric field associ-
ated with the radiation is:

B(F, 1) = o AL (i1)

the electrostatic energy term becomes:
qU' (£, t) = —q(t —1o) - E(£,1)

introducing the electric dipole operator:

A

d=gq(r—ro)
we find A
qU'(#,t) = —d - E (£, 1)
N 1 R ~ .
A1) = 3-[p — g+ (AL(Et) = AL(ro, )P + V() —d- E (i)

Long wavelength approximation
Here again we replace the potentials of the applied field by their values eval-
uated at the atomic nucleus:

A,(ro,t) = AJ_(I‘o,t) — AJ_(r07t) =0

Finally, the Hamiltonian takes the form:

A2

Hit) = -2 +V(r)—d-E(&1)

2m

The interaction Hamiltonian is the electric dipole operator. It has the same
form as the interaction energy of a classical dipole d located at ry in an
electric field E.

2.4 Equivalence between A - p and d - £ Hamiltonians

We want to establish a relation between the matrix elements of A -p and d-£
Hamiltonians. Let us suppose that £ and A are polarized alond z. Then,
A - p depends on p, while d-& depends on Z through d. We are going to
write an equation between the matrix elements of £ and the matrix elements
of p,. The evaluation of the commutator:

- 1
&, | = 5[]

6



will help us in this way. Either if we can find the result by writing
[#.02) = [(& Px) D= — (Br &) Do+ P (& D) = P (P 2)
= [&,P2] Dv — Do [2,D4]
It is quicker to use:
&, F(ps)] = ihF"(p,)
with F(p,) = p2. We get directly:

R i
(&, o] = =5,

We use this relation to calculate the matrix elements:
. ih
N AL 5. i
(Sl Folli) = = ¢ lpeli)
First, we calculate the left-hand side:
(fIl&, Holli) = (f|& Holi) — (f|H, 2li)
= E; (f|2]i) — Ey (f|2]i)

(Flle, Billi) = (B~ Ep) (Flatid = - (71puli

Finally, we get the expected relation:

.m
= 11—

lpalt) = i (Ey — Bi) (fI2]2)

Now, we can compute:

q R .
- x A;B

L (115, A
we remind that:

A, (t,0) = _& sin (wt)

w
So: c
q . N\ _ 9% Ay
_m <f‘pa: Ax‘2> - m w <f‘p:r’Z> sin (wt)
_iE(t,z),@ s o
= zh(Ef E;) (f|Z]i) sin (wt)
By — E, ey

zé fh (flgz&oli) sin (wt)
Wi

=1

» (f]d - &|i) sin (wt)



Finally:

_ Wi
w

’_ a 1P Addi)
m{fld - E(t, 2)|2)

3 Probability of transition under the influence of
a sinusoidal E.M-field

3.1 Perturbative approach

Short reminder: Consider a time independent Hamiltonian operator H,
which eigenenergies F, and eigenstates |n) are known. The most general
state of the system is written:

() =D Cult) k)

If the system is exposed to a time-dependent external field described by an
operator W (t), the Hamiltonian becomes:

H(t) = Hy+ W (t)

If the matrix element Wp;(t) of W (t) between a initial state |#) and a final
state |f) is different from zero, a transition occurs. The time dependent
perturbation treatment consists in expanding the time-dependent eigenstate
on the basis of the stationnary states:

(1)) =Y Cult) In)

The amplitude of transition between an initial state [i) and a final state |f),
under the influence of an operator W (t) is given, at the first order, by:

1 [t . . /
Sif = %/ dt’ (f!W(t’)m pil(Er—Ei)/ht
e Jo

with Fy — F; = hwy;. The probability is the square modulus of S;;
Pis = ||

We are interested in the optical transitions caused by the application of a
sinusoidal E.M-field:
E(ro,t) = E(rg) cos(wt)

8



The interaction Hamiltonian is the electric-dipole operator in the Goppert-
Meyer Gauge with the long-wavelength approximation. The full Hamiltonian
(atom—+field) is:

A2

H(t) = —% YV —d-E (v, 1)

The amplitude of transition between an initial state |i) with energy F; and
a final state |f) with energy Ey is:

1 t

—— [ A¢(f|d- E (xo,t')|i) i Er BN /n
th Jo

Spi=

~

— (f|d - E(xo, 1)]i) = — (f|d cos b]i) - E(ry) cos(wt) = —dy; - £(ro) cos(wt)

df 8(1‘0) t I ) Y df 5(1‘0) t . ) ’ YN
S = — v dt'[eiwt iwt'y iwpt’ S / dt’ i(wpiFw)t i(w—wp;)t
I TR T 2 /0 [ e e in e ), e e ]

The integration of this expression gives:

dfi 5(1"0) eilwritw)t _ 1 eilwpi—w)t _ q
sz' = ——0" . + =
ih 2 i(wpi +w) i(wp; — w)
S _ dfz 8([’0) 1 — ei(wfz‘-‘rw)t 1— ei(wfi—w)t
fi — h 2 Wfi—{—(,u W — W

and the probability is:

1— ei(wfi—i-w)t 1 — ei(wfi—w)t 2

_dh &)
= g2 4

P

wyi +w We — W

3.2 Resonance

The probability is proportionnal to the field intensity and takes significant
values when w = Z+wy;. A resonance process occurs when the angular fre-
quency of the perturbation is equal to the Bohr frequency associated with
the transition between [i) and |f). We choose the convention of positive
frequencies w > 0.

e w—wys = 0 means that wy; > 0 and £y — E; > 0. The system absorbs
the radiation at the frequency w to go in a higher energy state.

9



® w+ wyp = 0 means that wy; < 0 and £y — E; < 0. The system emits a
the radiation at the frequency w to go in a lower energy state.

Absorption and stimulated emission are described by the same probability.
For a given time ¢, the probability P;; depends only on w.

2 —i(wpitw)i i(wpitw) —i(wpi—w)i i(wpi—w) L
Pif _ E'|5(I‘0)|2 ei(wﬁ—i—w)%e (writw)y _ gilwritw)s +ei(wfi_w)%e (wri—w)g _ gilwri—w)3
h?2 4 Wi +w We — w
2 . t . t 12
sz — % X |(C:(I'0)|2 _Z-ei(Wfi-i-w)% S (CL)er + w)§ _ iei(wfi-i-w)% Sin (sz B w)i
o4 (wyi +w)/2 (wpi —w)/2
dj; |E(xo)|? 2
_ _fi + -
Pif — ﬁ . T ’A + A |
The probability is the sum of two terms: A* and A~. The denominator of
AT cancels for w = —wy; while the denominator of A~ cancels for w = wy;.

In an emission process, £y < E; and wy; < 0 thus A~ is negligible and is
called the antiresonant term when A™ is the resonant one. On the contrary,
in an absorption process Ey > E; and wy; > 0 thus A" is negligible and is the
antiresonant term. In the following, we will neglect the antiresonant terms.
This is the so-called resonant approximation.

Let’s consider absorption, the probability of transition is approximated
by:

2

Py G JEOOP |y o — )
o 1 (wpi —w)/2
' 2

The sinc function takes significant values for —m < &u% <
w=wys £2m/t

The resonance width can be defined as the distance between the first two
zeros of P;r about w = wy;. In this interval, the probability takes its largest
values:

AT
0w ~ —
t
The larger the time ¢, the smaller the resonance width. dw is not related to
the intrinsic lineshape of the atomic resonance. It is an uncertainty on the

frequency of the applied field due to its finite duration.
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We can write the probability in the following way:
: 2
B b€ [sin(wyi —w)b
h? 4 (wp —w)t/2

to deal with the well-known sinc function. Then, at the exact resonance,
when w = wy;:

Pis

_ D plE@)? _
h? 4 2
where (2 is the Rabi frequency of the transition.

'Pif . t)2

Figure 1: First order probability of transition P;; associated to a sinusoidal
perturbation with angular frequency w.

3.3 Validity of approximations

On one hand, The resonant approximation is valid if:

2Jwyi| > dw
with dw ~ 4w/t i.e.:
2m 2m
t> ~ —
wril W

On the other hand, the perturbation theory is all right if:

Pif<<1

11



Figure 2: Comparison of dw and wy;. The resonant approximation is valid if
dw <K Wy;.

Q
(71-15)2<<1

lf<<2
01

In conclusion:

27T<<t<< 2
w 01

4 Transition rate

In this part, we connect the perturbative approach with the Einstein model,
that we have seen in a previous lecture, and that describe the population
time-evolution of a two level atom. Its ground and excited levels are noted
la) and |b) respectively. Their populations, N, and Ny, are in equilibrium
with a thermal field and obey the system:

dn,
% ANy~ Buou (w) Ny + Bn (wn) N,

Ny+ N, =N

The density of E.M. energy of the thermal field is:

1
u(w) = 550|5(w, ro)|2

12



Then the density of probability per frequency unit associated to the transition
from an the ground state to the excited state is:

dy,  w(w)

APy = o
Pb h? 2€0|:

o] o

The total probability is obtained by integrating on all possible frequencies:

oy, [ sin (wo — w) % 2
Par = 502 /0 “(“){ wo—wyz | ¥

2 _ 2
When ¢ > —W, the function [%} tends to 27t (w — wp):
w

2
dba

“+00
Pu = g o /0 w(w)d(wo — w)dw

By expliciting the matrix element of the dipole operator:

2
d?. = ¢*| (b7 cosO|a) |* = ¢*ri,cosf
We find the probability at time ¢ as a function of 6:

TP,

Pab - 60h2

~cos - u(wp) - t

2
By averaging cos 6 over all the directions®:

2,.2
Tq°ry,
Pawp = ~u(wp) - t
b 3€0h2 ( 0)
The transition rate per unit time is:
APy T4°r;
_ fi u(wo)

dt — 3goh?
By comparing to the:

dN, dP 7rq2r§
— N, — o — B, - "N,
dt At 3eh2 u(wo) b+ u(wo)
_ mgrg,
ab = 3€0h2

2 2
3< cos >= (4m)~! fo% [y dfcos fsin dep

13



The corresponding expression for the stimulated emission is identical except
for an interchange of indices a and b since:

| (al?[b) |* = | (b]F]a) |?
we get By, = By, and:

3 3,29
A, = hewyg = hwy mq°rs,
a a -

m2e3 w23 3egh?

2.2 3

Ab o q Tabw(]

, = —a—0

3eohme?

We habe obtained the same result as when we use the quantized-field model.

4.1 Finite lifetime and absorption linewidth

_dzy [E(ro)[? [sin (dwt/2) 2

TR 4 { dw/2 }

In the absence of the we suppose however that N, < N; and N; >~ N.
The probability for finding an atom if level |2) is at time ¢ is :

LBy € [ [sin Gt /DT
NQ(t)_N'ﬁ'T/O owp | ¢ e

7312

d3 [E(ro)]? 4 1 1

t
/ ; ; / 1
NQ(t) — N——__/ |:6_F21t _ 562(6UJ+’LF21)t _
0

- —i(6w+iF21 )t/ dt/
2" }

1 —Ioi7

F21 22(5(&) — iFQl) + 22(5(&) + irzl)

ei(éw—iFm)t e—i(6w+iF21)t } t
0

NQ(t):N.d_gl.M{LJF 1 B 1 ]

h2 2(;0.}2 Fgl 22(5&) - iFgl) 22(5&) -+ iFgl)
N 02
No(t) = L
) 2l'y [(Wz —wp)® + ng

The fraction of atoms promoted in the excited state |2) is proportionnal to
the intensity of the E.M. wave (£2; term). The process presents a resonant
behaviour around the frequency wy that follows a Lorentzian law with a
full width at half-maximum 2I'5;. The finite lifetime of the excited state
introduces a broadening of the absorption line.
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5 Two-level system in intercation with an E.M-
field - Rabi oscillations

We consider a two-level atom described by the Hamiltonian:

S h —H,UO 0
=g (50 L)
with wy = (E, — E,)/h. This atom interacts with a classical perdiodic E.M.

field: ) A
Weap(t) = — (b|d - E(7p)]a) coswt = A ©y coswt

The total time-dependent Hamiltonian is:

H(t) = Hy+ Wy(t) = f (

n +wo 22 cos wt)
2

2001 coswt —Wo

The eigenstates are expanded on the basis of the stationnary states:
[9(2)) = Ca(t)e™ " |a) + Cy(t)e "/ |b)

The time-evolution is given, as always, by the Schrodinger equation:

d |(t))
dt

d Cb(t)@*iwot/Q B —wo Ql(eiwt _ efiwt) Cb(t)efiwgt/Z
th— - _
dt Ca (t)eiwot/Q 2 Ql (eiwt o e—iwt) Wo Ca (t)eiwot/Q
We apply the rotating-wave approximation:
‘ Cb(t)e—iwot/2 . i%cb(t)efiwot/z 1 +wp Qlefiwt Ob(t)e—iwot/2
7 ) ' ' —— . |
C, (t)ezwot/2 + i%Ca (t)ezwot/Z 2 Q) etit —wp C, (t)ezwot/Q

The terms wqy cancel.

th

= H(t) [v(t)

_
2
_
92

Z-Cfa (t)eiwot/2 Cb<t>efiw0t/26iwt

Z'C'fb (t)efiwot/2 Ca (t)eiwot/Qefiwt

15



Finally:

Ca (t) = 2—;Cb(t)el(UJ—wo)t :2_21013 (t)ezéwt
Cy(2) :?;Ca(t)e_l(w—wo)t :2_;Ca(t)€—u5wt

In order to remove the time dependency, we set:

Colt) = by(t)eiCw/2)t

Cb(t) — bb(t>67i(5w/2)t

It gives:
b, (t)ez(éw/2)t + Z-waa (t)el(éw/Q)t _ 2—;bb (t)ez(éw/2)t
O

bb(t)e—i(éw/Q)t . i%‘ubb(t)e—i(ciwﬂ)t

We have to solve a system of coupled differential equations with contant
coefficients:

m@::%mw %m@
by(t) = Z—;ba(t) - Z—jbb(w

We can for example transform the system in a second-order equation by
substituting by (t):

bit) = 2 i) S0

é_i {ba(w - Z—jba@)} = %ba@) - Z—fé—j {ba@) - gba@)]

The first-order derivatives cancel.

. by (t
ba(t) + i )(Qf + (5w2) =0
We calculate the discriminant:

A = —(QF + dw?)

16



and find the roots:

v/ l
/\172 = :|:§ Q% + 5&)2 = iﬁQ

ba(t) =A @Dt 4 B =i/

ow

bo(t) =AM + B e

by (1)

% 0
_2oalz
Ql{ (2¢+

21

5_“_’) GO B (9 _
2

Q ow
2 27

. ?ba(t)] — Q_ |:(Z§A eiQt —iZ B 6—iQt> . —(A ei(Q/Q)t +B e—i(Q/Q)t)
2 1

ow -
oW\ _i/2)t
)

The constants A and B are determined by the intial condition. The system
is in the ground-state |a) at ¢t = 0.

ba(0) = 1

by(0) = 0

The solution is:

Thus can we write the time-dependency of the coefficients b,(¢) and by(t):

QO — )
5("} eth

= A+B
1
= —[-A(Q+dw) + B(Q — dw)]
1
Q — dw
4= 5
Q4+ dw
B pu—
2Q)
Q4w o~
2Q)
(Q + dw) et/ | SO

2Q)

(Q o 50)) 6—i(Q/2)t:|

2Q
by(t) = Qil {—Q;Qéw
Finally, we get:
bo(t) =
by(t) =

17



Rabi oscillations
The probability for a transition |a) to |b) to occur, is:

2

02 2 /1
w(t) = ————— si —1/ Q2 + dwt
Pap(t) Pt o sm<2w T+ dw )

The probability P, oscillates in time at the generalized Rabi frequency
Q= /0 + dw? between 0 and a maximum value:
03 02

maxr __ _

“ T B Bt (w—w)?

Pult) = GO = (0 = Gisin (1)

AT presents a resonant behaviour for w = wy. The lineshape is a Lorentz

0.9
- ow=0
0.8 - 8w = O
0.7 dw =20
— 1 — Perturbative
= 06
~ 05 approach
< .
Ay
0.4
0.3
0.2
0.1-/ /\
0- : ‘ ‘ =S
n/2Q, n/Q, 3n/2Q, 2n/Q,

Time (s)

Figure 3: Time evolution of the transition probability P, for different values
of the detuning dw = w—wy. The result of the first order perturbation theory
is also displayed.

function the full-width of it is equal to 2€2;. At very short times we can write:
Ay Q
sin | =t | ~ =t
2 2

and: ) ) )
O /Q Q
Poy(t) ~ =% (—t) = 142

02\ 2 4

18



This the same result that we have obtainde by using the first-order time
dependent perturbation theory. As it can be seen in the figure 3, the perur-

2
bative approach remains valid while t < %

Coherent transients & 7 /2-pulses
A resonant E.M. field (dw = 0) is switched on at ¢ = 0 and switched of at

t= Q%% The time-evolution of the atomic sate is:

[9(t)) = ba(t)e™"/ |a) + by(t)e "2 |b)

Q Ow . (Q
ba(t) = cos (515) — i sin (§t>

Q Q
by(t) = —iﬁlsin (525)

and Q = /03 + dw?. If we chose dw = 0, we get:

) = o (20)

by(t) = —isin (%t)

Then, in the specific case of a F-pulse, we obtain:

Ql >
bUL(t) = COS (72—S21t) =

_ O m
by(t) = —isin (72—9175> = -

with:

SEREE

and, consequently:

1

— _eiwot/2 a) — Le—iwot/Q
We notice that: 1
(L) P =1 @) P =3

Thus, the probabilities for the atom to be in either state does not change
in time. But, it does not mean that the system does not evolve at all. Let
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us calculate the expectation value of the electric dipole operator between |a)
and |b):
(OI) = | e (] 4 e 0] 4| o) — e
V2 V2 V2 V2

Taking into account that (a|d[b) = (b|d|b) = 0 and (a|d|b) = (b|d|a) = da,

we find:

(@) (@)) = —= (a|d|b) et 4 % (b|d|a) = dpe™* = —dyy sin wot

i
2
The dipole-moment oscillates at the Bohr-frequency wg. This oscillation goes
along with emission of light at the same frequency. Although emitted at the
same frequency wy as spontaneous emission between the same two energy lev-
els, this light has different properties related to the coherence of the emission.
The phase of the oscillations of the atomic dipole is uniquely determined with
respect to that of the incident wave. An assembly of atoms all prepared by
the same 7/2-pulse will therefore all emit light with the same phase. This
is in contrast to what occurs with spontaneous emission, when individual
atoms emit light with a random phase. It is possible to observe the conse-
quences of this coherence in experiments. These include the directionality of
the emission, the appearance of phenomena related to the beating of fluores-
cence light with a beam coherent with the driving light. Such phenomena,
known as coherent transients, can be observed only over a timescale which is
short compared to the radiative lifetimes of the atomic states involved.
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1 Introduction

The approaches used in the previous chapter do not allow to take into ac-
count the interaction of the atom with its environment (collisions, sponta-
neous emission). If we are only interested in the way this interaction acts on
the dynamics of the system, the density-matrix formalism is very efficient.
It enables to combine the advantages of the quantum description and of a
phenomenological model. Indeed, the transitions induced by the classical
E.M. field are treated in the quantum formalism while the others interac-
tions are introduced in a phenomenological way by use of suitable relaxation
terms. In the specific case of a two-level system, the time-evolution of the
density-matrix is governed by the optical Bloch equations, the steady-state
solutions of which can be exactly determined. The system is equivalent to a
one-half spin in a magnetic field and can be represented geometricaly by the
Bloch-vector the evolution of which can be sketched in the Bloch-sphere.

2 Essentials of the density-matrix

2.1 Definition

The density-matrix is a representation of a linear operator called the density
operator. The density operator of a pure state is defined as:

o = |¢) (¢

The density-matrix is obtained from the density operator by choice of a basis
in the underlying space. If |¢) is expanded in a basis |n), we get:

ZO In) and (| = ZO*
Then, the expression of the density-matrix in the |n) basis is:

6= C.Cp |n)(m|

In practice, the terms density-matrix and density operator are often used
interchangeably.
The density-matrix elements in the |n) basis are:

IZO = n) (m]j) = CoCr im0 = CiC?
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The diagonal terms o;; = (i|6]i) = |C;|? are is the probability for finding the
system in the state vector |i). These terms are the corresponding popula-
tions of each stationary state |n) constituting the basis. The normalization
condition for the state |¢) leads to:

Tr&:ZJnnzl

The off-diagonal terms o;; = (i[6]i) = C;C} are complex numbers that
account for interferences between [i) and |j) that can appear when [¢) is a
linear coherent superpositon of these states. For this reason, the off-diagonal
elements are named coherences.

One of the interests of the density-matrix is the possibility of dealing
with mixed states that cannot be described by wavefunctions, like statistical
ensembles for exemple. For an ensemble in a mixed state such that each of
the pure states |¢) occurs with probability pg, the density-matrix is defined

by:
6= v lvw) (Wl = Y prow
k

k

2.2 Properties

-The mean value of an observable represented by an operator O is:

(0)=1(50)
-The time evolution of the density-operator of an isolated system can be

deduced from the Schrédinger equation and is governed by the Liouville-Von
Neumann equation:
do 171~ .
.51

dt ik
-If the system undergoes interactions at random instants with others sys-
tems, their average effect is represented by the addition to the Liouville-Von
Neumann equation of a relaxation operator. The relaxation terms of the
populations are:

doy;
{ & } =~ _Tisj)oii+ Y Tjnioj
rel

JFi J#i

where I';; is the transition rate from |z) to |j).



The relaxation terms of the coherences are:

dO'Z'j
de rel ij ’

Even if the I';,; and ~;; can be evaluated if the interaction Hamiltonian
of the system with its environment is known, we will consider them to be
introduced phenomenologically.

3 Application to a two-level system - Optical Bloch
equations

3.1 Derivation of OBE

As we did in the previous chapter, we consider a two-level atom described by

the Hamiltonian: "
ot +wp 0
=5 (5 L)

with wy = (E, — E,)/h. This atom interacts with a classical perdiodic
E.M. field:

W (t) = — (a|d - E(7)|b) coswt = ki coswt

The total time-dependent Hamiltonian is:

H(t) = Hy + Wa(t) = h <

+wo 2} cos wt)
2

202 cos wt —wp
The eigenstates are expanded on the basis of the stationnary states:
|1/}(t)> = C’a(t)eiwot/Q |CL> + Cb(t)e—iwot/2 |b>

As usual, we write the coswt with complex notation and we remove the
non-resonant terms:

~ ~ ~ h —iwt
H(t) = Hy + Way(t) = ( two - fhe )

92 Qle+iwt —wo

Up to this point, the notations are the ones we previously introduced.
We determine the time-evolution of the density-matrix by use of the
Liouville-Von Neumann equation:

s fh
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We calculate %&H and %H&:

) 1
6= -
0T 9

1

2

—in

(—ine“‘”t

(—iwoabb — i ome”

_Z‘Qlefiwt

+Z.(,U0

1wt

Obb
X
Oab

— WO hg — inaaae“"t>

Oba
Oaa

—inUbb€+Zwt -+ ’inO'ab —ingba€+ZWt + iwoaaa

—i e~iwt
+i(,4)0

1 . Tbb
,—UH =
ih Oub

1

2

Finally, we get:

d (Ubb Uba)
dt Oab Oaga

ba 1
>< —
Oaa 2

(—iwgabb — iy ope Tt

—in
_ZQI e-i—iwt

—iQope Wt + iwoaba)

—?:woO'ab — ingaa€+ZWt —inaabe_’“t -+ Z-CL)OO'CM

( i
i
=

- )

+iwt
S (opae™ — oge

—iwt) ;

(4

(Ubb - O-aa)e+th + inUab

0 .
(0w — Taq)e™™
—i%(obae“m — o€

b — twopa

fiwt)

The time-evolution of the density-matrix is given by the following set of four
coupled differential equations, the optical Bloch-equations:

doag
dt
dop,
At
dogp

dt

do_ba
dt

2
i
o
"2

Y
=

2
&

11—

2

(Uba(BMt — Ogb€

(Jbae““t — Ogb€

7iwt)

—iwt)

(Ubb - Uaa)eiwt + inaab

(Ubb — Uaa>€

—iw

t_ iwoaba

The relaxation of populations and coherences is taken into account by the
addition of the relaxation operator.

O-CLCL

Obb

Oab

Oba

0
0
0
0

O-Illl

Obb

Oba

)



For convenience, we suppose that 7, = 74, = 7. The system is closed, the
total population is conserved:

daaa dabb
dt dt
[y, is the relaxation-rate of the population and v the relaxation-rate of the

dipole. These two quantities have been introduced in the Einstein’s and
Drude-Lorentz models, respectively. One often writes:
1 1

Pa:_u = 7
e =TT

=0

with T} the population lifetime, 75 is the dipole lifetime. We distinguish two
opposite situations:

e If the medium is diluted, the only coupling of the atom with its envi-
ronment is the interaction with the radiation (spontaneous emission).
Then, it can be shown that:

I'sp
2

[y = Fspu Y=

where I'y, is the spontaneous relaxation-rate that we have calculated
previously.

e If the medium is dense, the relaxation processes can be due to colli-
sion between atoms, interaction with phonons, etc. The relaxation is
enhanced and:

7> Ty

The relaxation of the dipole is faster than the relaxation of populations.
It is easier to blur a phase (leading to a damping of the dipole, or of the
coherence) than to modify an energy (needed to damp the population).

The system of equation becomes:

ng“ = —z’%(abaei“t — O™ + Tpy onp
dSZb - ‘i%(abb = 0ua)e™" +i(wo +17) ou



3.2 Free evolution

In the absence of an external E.M. field, {2; = 0 and the system becomes:

doaa r
T + Lba owp Oaa(t) = 04a(0) e Tbat
do
d—;b = — e omp O'bb(t) = 1-— Uaa(O) eirb“t
do , the integration of which leads to o
d:b = i(wo+ 1Y) ow oap(t) = oawp(0) e
dop, - , Opa(t) = 0pa(0) e 0l
)0 6= onl)

If the system is prepared in an intial state with oy, — 044 # 0, the popula-
tions remain constant and the coherences evolve periodically with the angular
frequency wy.

3.3 Driven system
To solve this system, we remove the rapid time dependence of the o; by

setting:

wt

Oah = Oap€
Oba = Oba eJriwt
Osa = Ouaa

O, = Opp

It corresponds, as we will see further, to the rotating-frame transformation.
It consists in writing the coherence terms in the frame that is rotating at the
field frequency w.

d5aa Q1 ~ ~
—— = —1—(Opg — Oap) + L' T
1 5 (0% b) ba Obb
dop, R . ~
— = 1— (Opg — Oap) — L'pe O
T 5 (0% b) ba Obb
doay ., N ; RSN . ; . - »
—gtbe“m +iw G €T = —271(01,(, — Gaa) €7 (w4 i7y) Gap €T
dop, o , Q. _ - . N~
_d;f) e W —w G e = 271(01)45 — Gaa) € — (iwy — 1Y) Ty €



The system becomes a coupled set of differential equations with constant
coefficients.

da'aa Ql

ST _iT(&ba — Gab) + Lba b
% = i&(éba Gab) — Lba Ovp
dj;b = —i%(6bb — Oaa) T i(wo — W + 1Y) Tap
dgza = i%(6bb — Oga) — H(Wo — w — i7) Gpa

The system can be solved exactly in some limit cases.

3.4 Stationnary regime

Some analytical solutions can be obtained if we set the time-derivatives equal
to zero:

Q -
0 = _fi?l(a'ba — Gab) + Lba b
Q. B B
0 = 271(6% — Gap) — L'ba b
RPN _ . S
0 = —27(02717 — Gaa) T i(wo — w + 1Y) Gap
Q
0 = 2'71(51,1, — Gga) — i(Wo — w — i7Y) Gpa

Weak excitation, oscillator strength

if the excitation is weak gy, >~ 0 and G4, >~ 1, SO0 pp — 0pe =~ — 1 and:
d&ab .Ql . . ~
~ 13—+ 1(wyg —w+ 1Y) T,
dt B ( 0 ”Y) b

1 - —
replacing €}y = —ﬁdab &

d~a . . ~ . Wq, 'g
gtb—z(wo—w—l—w) Oapy = —1 ;h




Restoring the antiresonant term that we have neglected before, we find:

-

dy - g etiwt p—iwt
(w

Tab = Top O—w—l—ify)—i_(wo—irw—l—z’fy)
dap €[ wo—w =iy i | @otw—iy i
L hw—wﬁ+%e (o PP %) ]
and

dab LE [ efiwt N eJr’L'wt :|
Oba = : -
’ (wo—w—1y)  (wo+w—17)

cz;b . g |: Wy — w + /L’}/ e_iwt Wo +w + Zﬁy +iwt:|
2h | (wo —w)?+ 92 (wo +w)? +12)
The expectation value of the dipole operator is:

~

<cf> = Tr(cAfc?) = dup Tap + dba Oba

— |dw|? - € [ (wo—w) ™ (wot+w)e™ iy etiot iy et y
(

= = +
2h wo—w)+7?  (wtw)?+7? (wo—w)P+y? (wotw) 472

o\ _ da £ (wo—w) (wo + w)
)= {mwmuwﬂwwﬂ$+wkﬂm>

T
|dab|ﬁ £ {(w v — v } sin(wt)

+
0—w)?2+72 (wo+w)?+92

far from the resonance, when v < |w — wpl:

S\ Jdw*E] 1 1 dpl?- € 2
<d>2|abli g[ + }cos(wt):|ab| £_ 2o cos(wt)

S\ Tl € 2w
<d > =q TR — cos(wt)

Let us compare this expression with the one that we obtained with the Drude-

Lorentz model:
y q° 1 c
p(w) = m (W — w? — 2iqw)

q280 e—zwt e+zwt

2m |wi — w? — 2iyw + wi — w? + 2iyw




Far from the resonance:

2((/’ —iwt +iwt 2 1
p(t) =~ ol ( ° +— ) = q——Eo cos(wt)

2m \wg —w? Wi —w? mwi — w?

We can rewrite the dipole in the classical form:

< > fab 2 ! — ——&0 cos(wt)

where:

m -
fab = 2%0‘)0’7}11)'2

is a dimensionless parameter called the oscillator strength of the transition.
Then, the macroscopic polarization is:

N fa

P= Vo m&) cos(wt) = ggx& cos(wt)

and:
N q fab

w —
x(w) = V megw? — w?

If several transitions contribute to the polarization, then we can generalize
the expression of x

faf
X< Vm€0 Z

(.Ufa

Fast relaxation of coherences, rate equations
In a dense medium v > I'y,

do, Q. N . .
gtb = —171(01,}, — Gaa) +1(wo — w +17) Gap

The characteristic evolution-time of &4, is v~!. Similarly o4, and oy, evolve
on characteristic times ~ Fb_al. If v > I'},, we can make the assumption that
Gqq and oy, are constant at the scale of y~!. Thanks to this simplification,
we can integrate directly:

do, Q N
gtb —Z(UJO —UJ-{-Z’}’) Uab = _7/71<0_bb_0aa)
d~a . . ] ] B . . O B . .
%e—z(wo—w-i—w)t —Z(WO—W+Z’}/) Gab e—z(wo—w—‘rw)t — _271(0_%_0_&&> e—z(wo—w—i-w)t

10



t
5’ab e_i(wo_w+i7)t — _Z&((}bb - &aa) / e_i(wo_w—i—m)t/dt,
2 0
) ) Ql e*i(&]o*&)*f*i’y)t -1
Gop € WomwtNt — 25, — G
ab 9 ( bb aa) —’i((.dg — o+ 27)
~ O, ~ 1 — etilwo—wtint
Oap = —1—(Op, — 0,
ab 2 (905 = Faa) —i(wo — w + i)
When t > v~ !, we can neglect the damped terms and
~ .Ql 6bb - 6aa Q1 6'bb - &aa
Oab = V(7 = &

2 y—i(wp—w) 2 (wg—w)+iy

we replace with this expression in:

do Q
% = 2'71(51)@ — Gab) — L'ba T0p
day, Q2 B 1 1 .
Y, il — Oaqa T . I a
dt "4 ) (wo—w) —1y  (wo—w)+ 1y ba Tt
Q2 127y
=1— — Oaqa - I a Y
0 o) | s T
Finally, we get:
day, - N 7y 3
-, — — — Oaa) 57— I a
dt (On =0 )27 (wo — w)? + 2 ba Tbb

If we multiply this equation by the number of atoms per unit-volume N/V|
we obtain the rate equation for the excited state population:

dNn, 02 2
=2 = (Na - Ny)22 - ~ T N,
dt 27 | (wo — w)? + 2
o
= 2—F(w)(Na — Nb) — Fba Nb
Y
that is similar to the Einstein equation:
dn,
— = Bulwo) F@)(Na = Ny) = AN,
where we have introduced the absorption lineshape F'(w). We deduce that:
QZ ’Y2
Bu(wy) = = , A =Ty, and F(w) =
(wo) 2 b (w) (wo — w)2 + 2

11



4 Bloch vector

4.1 The two-level system seen as a spin 1/2

The Hamiltonian of a spin % S in interaction with a magnetic field B is:

Was = —vB-S = —y5(B,S, + B,S, + B.S.)

h (0 1 h (0 —i h /1 0
s=3(10)5=3( 7)) ==30 4)

A h B, B, —1iB
We.s = =785 ( ' y)

with:

The Hamiltonian of a two-level system in interaction with an E.M. field is:

h h
. . . 5 0 5
H=Hy+W = —uw, ((2] h) + 20 cos(wt) ( 8)
T2

= —wy S, + 29 cos(wt) S,

vl O

Remark: The minus sign before H, comes from the fact that in a classical
representation of a real spin 1/2, the spin tends to be parallel to the static
magnetic field Bg. It results that, in the Bloch sphere representation, the
|+) state is at the top of the sphere. In the case of the two-level system, it is
the opposite: the effective magnetic field brings the system into the ground
state |a) that corresponds to the top of the Bloch sphere.

It is equivalent to the Hamiltonian of a spin 1/2 in a magnetic field
B = —2(Q/vp) cos(wt) e, + (wo/vB) €. = 2B, cos(wt) €, — By €.

Hamiltonians ]flo and W can therefore be considered like Hamiltonians de-
scribing the interaction of a fictitious spin with magnetic fields By and 2B cos(wt),
respectively parallel to Oz and Ox, and of amplitudes such as the Lar-
mor precession-frequencies of the spin around these two fields are wy and
20}y cos(wt). The time evolution of a spin S in a magnetic field is given by:

ds
— = SxB
dt B O X

12



Sy S, 2B cos(wt)

% Syl =788 | x 0
S, S. —By
—ByS, +woSy
=g | 2By cos(wt)S, + BoS: | = | =284 cos(wt)S, — woS,
—2B; cos(wt)S, +2€ cos(wt)S,

4.2 Definition of the Bloch vector

The Bloch vector is defined as the expectation value of a dimensionless spin-

vector:
U = (u,v,w) = <§ >

The three components of S are the Pauli matrices
1/0 1 1/0 —i 1/1 0
Sx_ﬁ(l 0) ’Sy_ﬁ(z' o) ’52_5(0 —1)'
Using the properties of the density-matrix, we find
1
u = TI“(& . Sm) - 5(0-0,() + Jba)

1

v="Tr(6-S§)) = Q_i(gba — Oab)
R 1
w="Tr(6-8,) = §(Oaa — o)

and:
U+ 1V = Opg
U — W = Ogp
By use of the OBE:
daaa Ql

= it oy — Ty (1 —
% i (Opa — Oap) cOs(wt) + Tyy (1 — 044)
do Q
d—;b = zé(aba — Uab) cos(wt) — Fba Opp
doy, Q
Tab — 2 gy — 0a) cos(wt) + i(wo + ) Ou
dt 2
dop, Y] . .
dzlf) = 271(01,1) — Oqa) cos(wt) —i(wy — 1Y) Tpg

13



we calculate the time-derivative of U:

U “+wov

d

vl = —2w cos(wt) — wou
w +2v8); cos(wt)

The time-evolution of the Bloch-vector is equivalent to the motion of a di-
mensionless spin interacting with an effective magnetic field. If we include
the relaxation terms:

u +wov — ¥ U

d

1] = —2w cos(wt) — wou —y v
w +20v cos(wt) — Tpo(w — %)

4.3 Geometrical representation

A general state of a two-level system can be written:
0 _is) 0 gy
[v) =cos g e |a>+sm§ e |b)

The corresponding density-matrix is:

R 1C.I2 C.Cf cos? £ sin & cos Ze~¢ cos? & ssinf e
g = = ) — )
CyCr | Cyl? sin & cos §e ¢ sin” & sinfg e*? sin® &

2

1 S0 0 [et? 40
U= =(0a + 0pg) = sin 5 COS — —

1
5 5 :§sinﬁcos¢

v = Q_Z-(Uba - Uab) = sinicos 3 (%) = §sin951n¢

1 1 0 0 1
w = §(Uaa —op) = 3 ((3052 3~ sin’ 5) =3 cos ¢

1 1 1
U| = Vu2 + 02+ w? = \/Zsinzé(c082gb+sin2gb)+100829=5

The tip of the Bloch vector spans the surface of a sphere the radius of which
is % The angles # and ¢ are the polar coordinates of U. The projection of
U on the vertical axis gives the population difference while the projection
in the transverse plane gives the complex representation of the coherence.
The stationnary states |a) and |b) correspond to the sphere poles A and B,

respectively.

14
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|b)

Figure 1: Sketch of the Bloch vector U describing a pure state of a two-level
system.

5 Applications

5.1 Free evolution (No applied E.M. field)

Without relaxations

U = “wov
v = —Wol
w = 0

We solve the system by substituting v = +ii/wp:

il + wiu = 0
B+ wiv = 0
w= w(0)
The solutions are:
u(t) = u(0)cos(wot + ap)
v(t) = —u(0)sin(wot + o)
w(t) = w(0)

15



At t = 0, the projection of U in the Bloch-sphere are:
1
U= 3 sin 6 cos ¢g
1
v = 3 sin 6y sin ¢q

w = 5 cos b
We deduce that:

1
u(t) = 3 sin 6y cos(wot + ¢p)
L. :
v(t) = 5 sin 0o sin(wot + ¢g — 7)

w(t) = 5 cos 6o

oap(t) = u(t)—iv(t) = %Sin 0o [cos(wot + o) + i sin(wot + ¢o)] = aab(O)ei(“’OHd’O) =a;,(t)

The population of |a) and |b) remains constant but the coherences are rotat-
ing around Oz at the frequency wy

With relaxations

U= 4w —"7yu
U= —Wol — YV
. 1
W= —Ip(w— 5)

It can be shown that:

1
u(t) = 3 sin 6 cos(wot + ¢p)e "
v(t) = 5 sin 6 sin(wot + ¢o — w)e "

1 1
w(t) = 3 + 5(003 g — 1)e eat

The General solution of w+Tp,w = 0is w(t) = Ae~Twal. A particular solution
when w = 0 is w = 1/2. The constant A is determined by using the initial
condition w(0) = 1/2 cos 6.

. 3 1
tl}inoow(t) N tligloo §(Uaa B Ubb) N 5

16



5.2 Two-level system driven by the E.M. field

Rotating frame transformation
U obeys the equation:

Figure 2: Precession of the Bloch vector U around the effective magentic
field 2. Q is constant in the rotating frame.

dU
Fr 78U x B = U X [+wpe, — 20 cos(wt)e,]

Let be R’ the frame rotating around the z axis with the frequency w. Then,

we can write:
dU dU
—_— = — +we, x U
dt = dt R/

The field 2By cos(wt), parallel to Oz, can be split into two fields, of the same
amplitude B; rotating in the Oy plane at the frequency w in the forward
and in the reverse directions. If w ~ wy, the component rotating in the direct
direction accompanies the spin in its Larmor precession around By and can
therefore efficiently act on it, while the other component spins a too fast
compared to the spin (at the frequency - 2w) to have a substantial effect. In
the frame OXY Z, in rotation around Oz at the frequency w, the rotating
component that we conserve becomes a constant component Biex.

dU dU
<E)R, = (E)R —w e, X U=Ux [(WO — u))ez — QleX]

17



The components (i, ,w) of U in the rotating frame R’ obey the system of
equations:

e
I

(Wo—w)0—7 1
b= - — (W —w)U—7yD
- . _ 1
w = le—Fba(w—é)

The same set of equations can be obtained from:

-1 .

UZE(Uab_’_O-ba)
1

U= Z (&ba - &ab)

D= = (6u — )

W= = (oo — 0,
9 bb

By analogy with a classical field, we can write:

~ Q. U Qu — Q.0
%:Qxfj: Q| x o] =|Qa-Qu
Q. W Q0 — Qu
we deduce that
0
Q= 0
Wy — W

The Bloch vector U is precessing around the effective magnetic field €2; with
the frequency Q = 1/Q? + (wp — w)?2. Qis in the (X, Z) plane of the rotating
frame and « is the angle between 2 and Oz with

i =1 and =
ina = — an = _—
sina = - and cosa e

During the precession, the projection of U oscillates around w, between
Wy — 0w and Wy + dw at the frequency €2.

W(t) = wy + 6w cos(Qt)

This expression is compatible with an initial condition for which the system
is in its ground state and

1

18



la) w, + dw

Figure 3: Geometrical determination of w(t).

wy is the projection of OH on Oz so, consequently:

Ly
w0:§cos Q

and
1 1

5’@:5—5(308

Finally, we can write the time-evolution of w:

1
a = —sin’«
2

1 1 1
w(t) = 5 (cos® a + sin® acos(Qt)) = 2(6aa — o) = 5(1 — 26m)
1 2 2 L.
Tpy = 5 (1 — cos® a — sin” a cos()) = 5 sin"a (1 — cos(£2t))
] @, i
Tpp = ( ) sin (5 ) = T o) sin (\/Q% + (wo — w)2§>
Resonance

When w = wy, the E.M. field is resonant with the atomic transition and

19



Figure 4: When the two-level system is driven by a resonant E.M. field,
the Bloch vector U performs a precession in the vertical plane (Y, Z) of the
rotating frame.

The time-evolution of U is given by

u= 0
0= — W
w= v
It is easy to find that
u= 0
U= ——sint
w = §cos Ot

2 is along the OX axis of the rotating frame and U precesses around €2, in
the (Y, Z) plane, at the Rabi-frequency €2;. The population of the excited

state is 0
~ .92 1
Opp = SIn“ | —t
v ( ! )
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Chapter 4: Optical transition in atoms: the
case of hydrogen

December 1, 2022
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1 Introduction

In previous chapters, we have seen that the interaction between an atom and
an E.M. field is described, in the semi-classical model, by the electric-dipole
operator:

WDE =-d- Eocoswt

According to the time-dependent perturbation theory, the probability to per-
form an optical transition from an initial state |7) to the final state |f), under
the influence of this operator, is:

B |E(rg) P | L= et 1 elonon)®

Pif = =5 -
= p2 4 wp +w Wi — w

The w-dependent term has been studied in previous chapters. It takes sub-
stancial values when the frequency of the field is close to the Bohr-frequency
of the atomic transition. The transition probability is large when:

w = twy;

However, this condition is necessary but not sufficient.To occur, a transition
between |i) and |f) must satisfy:

dyi = q(flr|i) #0

It is the role of the selection rules for electric— dipole transitions to specify
the transitions that may occur between the states of interest. They are based
on an examination of the transition dipole moment. If the latter is different
fom zero, the transition is said to be allowed. In the opposite situation, it is
forbidden.

The value of (f|r|i) depends on the symetries of the wavefunctions asso-
ciated with |é) and |f). A general case of forbidden transition is when the
wavefunctions ;(r) and 1¢(r), associated with |i) and |f), have same parity.
It involves that their product is even and:

Uity = [ oeyrv s = o

A transition can only occur between states with different parities and must
conserve some physical quantities that characterize |i) and | f)(such as energy,
orbital momentum, spin...) to insure the matrix element of # to be non-
zero.. The optical selection rules express these conservation laws in the
form of mathematical relations between the values of the quantum numbers
characterizing the initial state and the values of the equivalent quantum
numbers associated with the final state,



2 Eigenstates and eigenfunctions

The eigenstates of the hydrogen atom are characterized by three quantum
numbers (the electron-spin will be considered later): n, ¢ and m.

e n is the principal quantum number. It is an integer different from 0
and is associated with the energy eigenvalues:

E
E, = ——; with B, = 13,6 ¢V
n

e / is the azimuthal quantum number. It is the angular momentum in
unit of A.

e m is the magnetic quantum number. It is the projection, in unit of A,
of £ on an axis of quantization.

The wavefunction is the product of a radial part by an angular part:

wn,f,m = Rn,€ nm(e’ @)

Y, ™(0, ¢) is a spherical harmonic and is eigenstate of the anfugular momen-
tum operator:

LPY[™(0, ) = €L+ )R Y™ (6, )

and of its projection along a quantization axis:
Lz}/ém(& 90) = mh an(a 90)

The first spherical harmonics are

1
Y = —
0 vVam
3
YY) = ECOSQ
Y:I:l _ i iné Tip
A = F sinf e
8T

These expression are useful to express cos § and sin @ €% as a function of Y;™.



3 Optical Transitions

3.1 Linearly polarized light
We consider a hydrogen atom located at r = 0 submitted to a light linearly-

polarized along the z axis:
E(0,t) = Ecoswt e,

The interaction with the E.M.field is described by the electric-dipole operator:
eiwt + e—iwt

2
9y = |ng, li,m;) and |f) = |ng, Lp,mys) being the initial and final states,
respectively, the matrix element associated with the corresponding transition
is:

WDE = —qéé'o coswt = WDE = —qéé’g

wt

“ ) & )
<f‘WDE’Z> = —CIEO <nf7€f7mf|zfni7€i,mi> e

&
- QEO <nf7 gfa mflé‘nla gi; mz> €

If we agree to choose w > 0, the first term in the right-hand side is resonant for
wyr; < 0 (stimulated emission) while the second term is resonant for wy; > 0
(absorption).

(HWoli) o ~a8o [ sinbdr d8 gz, (1) R (1Y, (0,907, (6. )

—twt

In spherical coordinates, the expression of z is:
z=rcosf

and cos can be written as a function of the spherical harmonics:

4
z =rcosf :rnglO 0, )

- , |4 .
<f|WDE’Z> X —qu 3/ sl (7’) Rm,&' (7’> 7’3d7’><
/ sin0d0dy Y, (0,0) Y7 (0,9) Y (0, )

It can be shown that the integral is non-zero when:
b= (;£1
m = my;

4



Example
The initial state is [n = 2,0 = 1,m)

Figure 1: Optical selection rules between the states |2,1,m) and |2,2,m) of
the hydrogen atom for a linearly-polarized light.

3.2 Circularly polarized light
We consider a light the electric field of which is:

&
£(0,1) = == [coswt e, + sinwt ey

V2

This field is rotating at the angular frequency w in the anticlockwise direction
around the z axis. The electric dipole operator of a o™- polarized light is

&
(2 coswt + Psinwt] = g—=

V2 V2

=q— |(@ -5 +(@+ig); ]=W+ei“t+vif—e—m

WDE:(] T +vy

6iwt + e—iwt ez’wt _ e—iwt
{ 2

21

If we agree to choose w > 0, the first term in the bracket is resonant for
wy; < 0 (stimulated emission) while the second term is resonant for wy; > 0



(absorption).

£ E S
<f‘W+‘Z> X _q_O <nf,£f,mf‘l' + Zy‘niagiami>

V2

— /r2 sin @drdddeR;, . ,. (r) }QTf* (0,0) (T + 1Y) R, 0, (1) Y, (0, ¢)

ng,ls
In spherical coordinates:

T+ 1y = rsinf cosp + irsinfsinp = rsinf e'?

I3 .
YljEl =F & sinf et

we express the operator as:

By use of:

X / Y (0,0) Y (r) Y (0, ) sinfddg

It can be shown that the integral is non-zero when:
mf = m; —+ 1
lp= (;£1
mp= m;—1
Normal Zeeman effet

The application of an external static magnetic field By along the quantization
axis is described by the Zeeman Hamiltonian:

For a o~ polarized light:

ﬁZ = _erngO

6



Figure 2: Optical selection rules between the states |2,1,m) and |2,2,m) of
the hydrogen atom for a circularly-polarized light.

The first-order correction to the energy of the m, state of the £ = 1 level is
therefore: X
(€, me|Hz|l,me) = —yemuhBo = ppmeBy

where pup is the Bohr magneton®.

We have already seen that transitions with different values of Amy corre-
spond to different polarization of electromagnetic radiation. In the present
case, an observer perpendicular to the magnetic field sees that the outer lines
of the trio (those corresponding to Am, = +1 are circularly polarized in op-
posite senses. These lines are called the o—lines. The central line (which is
due to Am, = 0) is linearly polarized parallel to the applied field. It is called
the m—line.

4 Fine structure

4.1 Spin-orbit coupling

The electron moves at a velocity v in the electrostatic field E of the proton.
Special relativity indicates that the electron undergoes a magnetic field in its

IFor the electron v, = ¢/2m < 0 and pp>0



- +1
P

0
-1

AM, = -1 0 +1
'|S 0
vo LI lv

B=0 B>0

Figure 3: The splitting of energy levels of an atom in the normal Zeeman
effect, and the splitting of the transitions into three groups of coincident lines.

rest frame: .
B=——FvxExpxr=L
c

The electron possesses an intrinsic magnetic moment My = qmi that inter-
acts with the field B.

The corresponding interaction energy is written
W=-M,-BxL-S
It can be shown that the spin-orbit operator takes the form:
Hy,=&(r)L-S

The spin orbit interaction modifies the previous energy spectrum by lifting
some of the degeneracy of the states relatively to the orbital momentum.
The wavefunctions that diagonalize f[o + F[so are the eigenstate of the total
angular momentum J = L + S. The eigenvalues j of J are integer numbers
ranging from |¢ — s| to £+ s. The projection of J along the quantization axis
is called m;. For each eigenvalue j ofj, m; is an integer such as —j < m; < j.

(—s|< j < l+s

—J< m; < g



Each level is characterized by a spectroscopic term:**™ {}; where [ is a letter
corresponding to the value of ¢ (s,p,d...) and 2s + 1 is the multiplicity. For
example, the four-fold degenerate |[¢ = 1,s = 1/2) state of the hydrogen atom
is split into *p3/o and *py /o.

=32 m;:
e [4] =312
13 A¢ =112
[6] =——(
£=1;5=1/2
2/3 A,
L =12 m;:
b [21 112

Figure 4: The splitting of the states of a p-electron by spin—orbit coupling.

m; = -3/2 m; =-1/2 m; = 1/2 m=3/2
j=3/2

p

j=1/2

s=-1/2 s=+1/2

Figure 5: Optical selection rules for a circularly-polarized light.

Regarding the order of magnitude of Agp, for a hydrogen 2p-electron the
splitting is Ago ~ 45.107% eV. In condensed matter, the splitting due to the
spin-orbit interaction can reach several hundreds of meV.



m; = -3/2 m; = -1/2 m; = 1/2 m,=3/2
p j=3/2

m; =-1/2 m; = 1/2 j=1/2

Do @G

s=-1/2 s=+1/2

Figure 6: Optical selection rules for a linearly-polarized light.

4.2 Anomalous Zeeman effect

A magnetic field By along the quantization axis Oz lifts the state degen-
eracy according to the eigenvelues of the total angular momentum. The
corresponding Zeeman Hamiltonian is written:

j{[z = wo(iz + 25;)

where wyq is the Larmor frequency wg = —q/mBy. The Zeeman Hamiltonian
does not mix states with different angular momentum j, it lifts the energy
degeneracy between the different values of m; within a subspace with a given

VE

Remark

Note that, because the perturbing Hamiltonian does not contain any spin
operators, the spin quantum number m, cannot change during a transition.
Hence, we have the additional selection rule that

10
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Figure 7: Zeeman effect on the levels n = 1 and n fine structure of the hy-
drogen atom Optical selection rules between the states |2,1,m) and |2,2,m)
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We consider the case of the simplest molecule ever, the Hy molecule. It
is constituted of one electron and two protons.

1 Eigenstates

1.1 Hamiltonian
The full Hamiltonian is

. o, o, R,
H = — _ _
0 2m, Ve 2]\41vl 2M, Vat %,—/V(r’ fir, )

N

N~ Coulomb potentiel
electron kinetic energy Nuclei kinetic energy

with

1 1 1
V(r,Ry, Ry) = ——2 [(

— - -
471'50 T — Rl) (7" — Rg) (R2 - Rl)

q 1 1 1
B 471'80 |:7’1+’I“2+R:|
We do the Born-Oppenheimer approximation: because of the large mass dif-
ference between the electron and the proton, the timescale associated with
the electron motion is much smaller than the one related to the motion of
protons. The electronic wavefunction is able to "follow” continuously the
nuclear motion and changes in the internuclear distance do not cause elec-
tronic transitions. The nuclear position act only as a parameter that slightly
modifies the electronic wavefuntion.
The electronic and nuclear motions are decoupled by writing

77/)(1‘, R, RQ) = ¢(r’ R, RQ)S(RM RQ)

and we neglect the derivatives of ¢ relatively to R and Rs:

h2 2 2

0 h
~aar V3% = ~app [OV3E+EVI0 - 29,0V,¢) =~

PV3E
We subsitute ¢ in the Schrodinger equation:

Hog¢ = E¢¢



2

Boé = [_ 221

h2
Vi¢+V(r, Ry, RQW] §— ¢Z oM, Vi

h?
= B(R)o =6 ) - ViE
j J

¢ is solution of:

§=E¢§

_ ; 2—%V ;+U(R)
where R = |Ry — Ry| and U(R) = E.(R) is the solution of the electronic
equation and plays the role of a potential energy that depends only of the
internuclear distance.

1.2 Nuclear motion

The Hamiltonian of the nuclear motion is

2 R
Hy = _2M1V1 — 2M2V2 +U(R)
We express this operator in the frame of the center of mass G by setting:
R=R; - R,

RG - (MlRl + MQRQ)/(Ml + Mg)
R,j :RG+R Mj/(Ml —|—M2)

H ~ becomes
] P ge g R
Hy = —— -
v =551 Vhe ~ 5, Vh+U(R)
The problem is turned into the study of a fictitious particle of reduced mass
po=M"+ My

h2
——V3+UR)| E=E
[ ST +U( )} 3 3
In the vicinity of its minimum, U(R) can be expanded using a Taylor series:

UR) = V) + 5 () (R By

Finally, we have to solve the Schrédinger equation of a a particle in a quadratic
potential :

K2 1
_EV% + §MW§(R — Ry)* — !U(Ro)’} §=FE¢



For the sake of convenience, we set U(Ry) = 0. The Laplacian is:

B2 1 o2 12
- Vp=-———-—"—R+
2u 2u ROR? 2uR?

The Hamiltonian becomes

. 1 o2 L2 1
H - _ -~ - 2 o 2
i Rar g Tl o)

We look form the wavefunction in the form:

1 me
gu,é,mg (Ra 67 90) = EXV(R> Yvﬂ (97 ()0)

we substitute in the Schrédinger equation

Gt VIR G (R0 0) =~ =L TRy v6, )

2# R v,l,my yU,9) = Q,u ROR? Xv ) , ©
h%(f +1) 1 e 1 -
|:—2MR2 + V(R)} () Y (0. 0) = Eoxu(R) Y™ (6, ¢)

where we used

LY (0, ) = L0+ )R Y;™(0, )
By dividing both sides by +£Y,;™, we get

[ R R+ 1)

: 1, )
W + e + V(R)] Xvt(R) = Eye xo(R), with V(R) = S puwy(R—Fo)"—|U(Ro)|

For the sake of convenience, we set U(Ry) = 0.

w9 R+l 1, )
[_ﬂ ore " e Tyl ) 1 Xo(R) = Eye xu(R)

Assuming
RA(0+1)  RH(0+1)
2uR*  2uRj
we get
h2 82 1 9 9 h2€(£ + 1)
{_@@ + §uw0(R — Ry) ] Xv(R) = [Eu,z - TR%} Xv(R)
R0+ 1)
hwo(v +1/2) = E, 0 — TR



R2(0+ 1)

E,o=h 1/2
o= Rl +1/2) + 7

X»(R) is solution of the one-dimensional harmonic oscillator:

Xv(R) = ]\C,hﬂ,(u)e_“Q/2

where H is a Hermite polynomial, u = (R — Ry)/a and a = (h/pwy)/?.

Properties of the Hermite polynomials
1. H,(u) is solution of H! —2uH/ + 2vH,

2. H,1 =2uH, —2vH, 4 (recursivity).

3. fj;o H,H, e *du = 6,, (orthogonality).

4. fj;o H2e " du = 2" /70!

U (R)

nzl{

SN
(IR |
O N

S

I

o
{_l_\
SS S
T
or N

Figure 1: Eigenstate of a diatomic molecule in the electronic groundstate.



2 Selection rules

2.1 Optical transitions

U (R)

Electronic transition

Figure 2: Possible optical transitions from the groundstate of a diatomic
molecule.

2.2 Vibration-rotation transitions

The dipole moment is directed along the straight line joining the two nuclei.
It can be written as an expansion in powers of R

d(R) = do + di (R — Ry)

For a homonuclear molecule d(R) = 0.
Considering that:

1 m
él/,f,me <R7 67 gp) = EXV(R) }/E 6(97 gp)
and

cosf = ?YIO



We can evaluate the matrix element of the dipole-moment operator

4 toeo
s ma (R cos Bl bmes) =\ 5 [, (BRI (R
0

X / Y7 (0,0) VY (r) Y (0,0) sin fdfdy

The angular part is different from zero when ¢y = ¢; 1. Concerning the
radial part

oy = [, @R (R) = [, (RRIARY, (R)

o0

because x,,(R) =0 when R < 0.

+00 +oo
ooy = |G (RIRIR + di [, (B) (R Ro) xi(R)E
400 9 +o00 )
= adyN,,;N,, Hy, (u)Hy,(u)e™ du + o*d; N, N, Hy, (u)H,,(v)ue™ du
+o0 9
= adyN,; N,,6,, ., + 042d1Nl,fN,,i H,ff(u)Hl,i (w)ue ™ du

Using the recursion relation H,,, = 2uH, — 2vH,_ 1, we express:

+o0 +o00
* —u2 * —u?
- H,/f(u)Hl,i (Wu e du = . Hy, (w)Hy, 41 (w)e™™ du
00 )
+ Vl H:f (u)HVi_1<u>e_u du = 5l/f,l/7;+1 + Vi(SI/f,Vi—l
Finally

1
]l/i,l/f = OédONquui(Syf,yi + OéleNquui |:§5yf,ui+1 + V(Syf,yi—l

(Vf,ﬁf,m&ﬂd(R) COS Q\Vi,&,mm) 7é 0 if

lp= (;£1
vp= v;—1, v +1
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Figure 3: Sketch of the optical selection rules for vibration-rotation transition
a diatomic molecule.

Form of the spectrum
Let us consider the possible transitions between an initial state

h2
FEoy, _—hw0+2 RQE(E +1)
and a final state
E —§hw +h—2€ (lr+1)
1,€f - 2 0 2IUR% f f

with Al = +£1.

First case (; = (; + 1

3 h?
Ll = 5 0+2NR2< i+ 1)(4 +2)
and
h2
Eip, — Eog, = hwo + 72 (6; +1)
0

This condition gives rise to series of regularly spaced absorption lines, which
energies are larger than Awg, and that consitute the ”R-Branch”.
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Second case (; = {; + 1

3 h?
B, = —hw — (¢ 1) (¢ 2
L = 5 0+2,uR3<f+ )ty +2)
and
d (i +1)
Evp, — Eop, = hwy — —5 (0; +
1,65 0,4 0 uRg

This condition gives rise to series of regularly spaced absorption lines, which
energies are smaller than hwg, and that consitute the ”Q-Branch”.

34 203 12 0ol =0 201 362 463
’ l , ,,,,,, 2
w/2n v
P branch R branch

C. Cohen-Tannoudji, B. Diu, F. Lalog, “Quantum mechanics”

Skelch of the vibration-rotation spectrum of HBr
http://hyperphysics.phy-astr.gsu.edu

0.300 0.310 0.320 0.330 0.340
Energy (eV)

Figure 4: Theoretical and experimental absorption spectra of vibration-
rotation transition. The experimantal spectrum is related to the HBr
molecule.

2.3 Electronic transitions

Because nuclear masses are so much larger than the mass of an electron,
an electronic transition occurs within a stationary nuclear framework and
the nuclear wavefunction remains unchanged during an electronic transition.
Classically, the transition occurs when the internuclear separation is equal
to the equilibrium bond length Ry of the lower electronic state, when the



nuclei are stationary, and that internuclear separation and state of motion
are preserved during the transition. As a result, the transition terminates
where a vertical line cuts through the upper molecular potential energy curve.
Then, the molecule relaxes to its new equilibrium position that correspond to
the nuclear groundstate v = 0 of the excited electronic-state. This relaxation
occurs by emitting phonons.

Energie

Coordonnées nucléaires

https://fr.wikipedia.org/wiki/Principe_Franck-Condon

Figure 5: Franck—Condon principle energy diagram. Since electronic tran-
sitions are very fast compared with nuclear motions, vibrational levels are
favored when they correspond to a minimal change in the nuclear coordi-
nates. The potential wells are shown favoring transitions between v = 0 and
v =2

In a molecule, the electric dipole moment operator depends on the loca-
tions and charges of the electrons r;, and ¢, and the locations and charges of
the nuclei, which we denote R; and Z;q, respectively:

d= _qzri +QZZ[RI = de(r) + dn(R)
i I
If we assume the electric-field to be z—polarized, the projection of d on Oz

is
- 4
dcost =4/ ?WYIO(Q, ©)
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The matrix element of d between initial and final states is:
<Ef’ Ef’ Vf|d|Ei7 gfv Vi) -
[ ¥ 0.0 v00.0 Y0009 [ x5, ()] [ 61, (v R0 (v R o (R)AR

[ 0.0) V0.0 V0,009 [ x5, (R (R (R / b, (x, R)os, (v, R)r 4R

*O

= Gyt By, | Xy (B (R (IR = 8o, [ G, (R (R)AR

The integral <ngE ; ’¢E> over the electron coordinates is zero because the elec-
tronic states are orthogonal to one another for each selected value of R.
Therefore, if we assume the dipole moment to be independent of the nuclear
position, the overall electric dipole transition moment is

<Ef7 gf’ Vf|J‘Ei7 gf? Vi> = 5€f,€¢i1 5mf:mz‘ dEi,Ef /thf (R>XVZ<R)dR

The probabilitity transition from |E;, {¢, v;) to |E;, {f, v;) is proportionnal to

~ 2 2
(Ep,lp,vgld| By, Ly, vg) dp, 5| (v vp)|

= 5€f,€i:t1 5mf,mi

where
Iop) = [ 6, (R (R)AR
is the Franck—Condon factor.

Overlap integral between vibronic-states
It can be shown that, if only the state v; = 0 is populated, then

‘ [ (Bo(miar 2

S is the Huang-Rhys factor: it represents the strength of coupling to the nu-
clear degrees of freedom. The Huang-Rhys factor is related to the equilibrium
position offset AR, by

S”
-5 = [V
- pl 70

wo
ﬁARg

Hence, if ARy = 0, I(vi,vf) = 0,,,,: the |x,) in the ground and excited
states are identical and, because of their orthogonality, <X,,f ‘Xw> = 0 when
Vi # 1.

S=p

11



When ARy # 0, transitions between states with different values of v;
and vy become allowed. Significant values of the overlap integral I(v;,vy)
are found for a progression of vibrational states v, so transitions occur with
varying probabilities to all of them. Thus, a progression of transitions, a series
of vibrational transitions, is observed in the electronic spectrum (see figure 6).
The larger ARy, the larger the number of allowed transitions. The relative
intensities of the corresponding spectral lines are proportional to the square
of the electric dipole transition moments and hence to the Franck—Condon
factors, |I(v;,vy)|?. Increasing ARy also implies that |I(v;,vf)|? takes it
highest value for larger v;.

I\
\ /.
\ )
\ /
i,
I‘A_IQO"

Figure 6: Absorption between vibronic states. The expected absorption and
emission spectra are a series of lines regularly spaced at separation hwy with
relative intensities according to F?.

Relaxation to the ground state - Stokes shift

During the absorption process, the internuclear equilibrium distance is pre-
served. However, after the photon absorption, the molecule relaxes non-
radiatively to the state v/ = 0 in the excited electronic state with the new
equilibrium distance Rj,. The excess energy is lost by emetting one or several
vibration quanta fwgy.The radiative sponaneous emission occurs from v/ = 0

12



and the selection rules for emission are the same as for absorption. Thus, the
nature of vibronic states implies a systematic energy shift called Stokes shift

between emission and absorption (7).

v'=3 v'=3
v =2 v =2
v=1 vi=1
v'=0 v'=0
/
Estokes =2 hG)
v=3 — v=23
=2 — v=2
v=1 /4 v=1
v = v=0
AR, AR,

/
E

stokes

=6 hw

Figure 7: Increase of the Stokes shift Fgiores with Ap,.

The larger the Huang-Rhys factor, the larger the Stokes-shift.
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Figure 8: Calculated absorption(blue) and emission(red) spectra of a di-
atomic molecule for different values of its Huang-Rhys factor S.
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Appendix

We look form the wavefunction in the form:

1 m
él/,f,me (R7 87 90) = EXV(R) }/Z 2(97 gp)
by using R
LY{™(0, ) = (L + 1)R* Y™ (0, 9)
2 R .
{—@VR + V(R)] Evem, (R, 0,0) = _ﬂEﬁX”(R) Y,"(0,¢)
R20(0 + 1) 1 . 1 .
L 4 VR B Y 6.) = ) Y 0.9

by dividing both sides by £Y;™, we get

G N R0+ 1)
21 OR? 21 R?

+wmhmm=@mﬂa

with

V(R) = Ju(R — Ro)’ — |U(Ry)

For the sake of convenience, we set U(Ry) = 0.
{ R* 9% RH(+1) 1

2 2 R R
21 OR? 21 R? 20 } Xv(R) vt Xv(R)

R20(6+1)  B20(0+1)

we assume that

2uR? T 2uR?
_h_28_2+1 W2 R? (R) = |E _w (R)
) i A e Py I B
R20(0+1)
1/2)=E,4 — —(——5—
o(v +1/2) = Bus = 5 o
B2+ 1)
E,; = hw 1/2) + ——5—
o= Rl +1/2) + =

X»(R) is solution of the one-dimensional harmonic oscillator:
Xo(R) = N, H,(w)e />

where H is a Hermite polynomial, u = (R — Ry)/a and a = (h/pwo)/?.
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1 Electronic states and band structure

1.1 Crystal structure

Condensed matter consists in the agregation of atoms with a density of a few
10?2 cm~3. Crystalline materials, as semiconductor compounds are, see their
atoms (or molecules) periodically arranged in a higly ordered microscopic
stucture. A crystal is built up by repetitive translation of its unit cell along
its principal axes. It is characterized by the symetry-operations through
which it remains identical. The number of crystalline structure in nature is
so large that it consitute the topic of crystallography. However, the most
studied semiconductors present simple arrangement such as diamond, zinc-
blend (cubic) or wurtzite (hexagonal) structures.

Interatomic distance

[6N]
[6N]
p2 (6] p?  p2 (6] [6] p2
[ON]_ 4
2N
[2N] N
2 [2] PR ) 2
2N
[2N] N
2N
Saturated HOMO orbital Unsaturated HOMO orbital
= insulator = metal

Figure 1: Construction of the crystal orbitals starting from the s and p
orbitals of an atom with s?p? electronic configuration.

1.2 Electronic states

The electronic structure of solids can be regarded as an extension of molecular
orbital theory to aggregates consisting of a virtually infinite number of atoms.



The simplest example of the use of LCAO is illustrated by the calculation of
the electronic states of a homonuclear diatomic molecule. Its wavefunction is
written as a linear combination of atomic 1-s orbitals. One has to solve the
secular determinant is equal to:

a—FE [—-FES| 0
B—ES a—FE|
the eigenvalues of which are:
L+ axp
B =15
The corresponding wavefunctions are:
1
) = ———=[15(r — Ry) £ ¢15(r — R
60) = g 1l — R £ 6 — )

or, with a more general notation:

¢(r) = Cugrs(r — Ry)

The coupling lifts the degeneracy between the electronic states with the same
symetry leading to the existence of bonding and antibonding orbitals. Both
of them are two-fold degenerate.

We can apply the same technique to semiconductors compounds. Their
possess 8 valence electrons.

Examples
e Si: [Ne| 3s?3p?
e GaN Ga: [Ar]3d'%4s?4p! & N:[He]2s?2p?
e CdTe Cd: [Kr]4d'%5s? & Te: [Kr|4d'95s?5p*

Let us consider a chain of N identical atoms with s*p? configuration (this
is the case for Si for example). The electronic states of the crystal arise
from the coupling between atomic orbital having the same symetry that lifts
the degeneracy between them.The electronic states of the crystal can be
obtained by generalizing the concept of LCAO to a chain of N atoms, each
of which having one valence s—orbital that can only overlap with its two
immediate neighbours. the solution of which results in the existence of s and

3



p, bonding and antibonding orbitals that are N—fold degenerate. The way
these orbitals are ordered and occupied by the 8V valence electrons determine
the insulating or metallic character of the compound. The coupling depends
on the interatomic distance (figure 1). Depending on the relative energies
of the bonding p-orbital and the antibonding s-orbital, the highest occupied
molecular orbital (HOMO) can be saturated or unsaturated. Semiconductors
correspond to the case where the HOMO-orbital is saturated.

1.3 Fine structure

In most of the semiconductors, the top valence band is a six-fold degenerate
¢ = 1 state while the conduction band is a two-fold degenerate s-state. If
we take into account the electron spin, the states at k& = 0 are eigenstates
of the total angular momentum operator J that can take the values j=1/2
and j = 3/2. The six bands are labelled |j,m;) where m; is the projection
of j on the quantization axis. The spin-orbit interaction lifts the degeneracy
between j =3/2 and j = 1/2 at k= 0.

without spin with spin
Cubic lattice Hexagonal lattice
CB (=0 — [1] j=12 — [2] j=12 — [2]
VB (=1 = [3] J=32 == [4] Jj=32 (2]
A Acr
S0 j=3/2 2]
j=12 2] Aso
j=1/2 2]

Figure 2: Fine structure at £ = 0.



1.4 Bloch theorem, dispersion

Up to now, we did not consider the translationnal invariance of the Coulomb
potential due to the periodic arrangement of atoms. If we consider a one-
dimensionnal infinite chain of atoms with a characteristic lattice vector a.
Because the arrangement is invariant through a translation of vector a, the
electronic density of probability must satisfy:

[¥(z + ma)|* = [v(a)*

that is to say '
(@ +ma) = ()

This condition is fullfilled if ¢ (z) has the form:
U(z) = e * () where u(z + na) = u(x)

where 0 < |k| < 7/a. This is the Bloch-theorem.
() satisfies the Bloch-theorem on the condition that:

() =N Z e~ g (z — na) where N is a normalization factor.

k lifts the degeneracy between the crystal states that are spread and consti-
tutes quasi-continuous energy bands: there is energy dispersion as a function
of k in the reciprocal space(see figure 3). The highest occupied band is
the valence band while the lowest unoccupied band is the conduction band.
They are separated by the energy bandgap E4. If the valence band maximum
and the conduction band minimum correspond to the same value of k, the
compound is said to be a direct bandgap semiconductor. If it is not the case,
it is said to be and indirect bandgap semiconductor. The band structure is
periodic in reciprocal space and is usually represented in the first Brillouin
zone with k ranging from 0 to 7/a. In the following, we focus on the region
around k£ = 0 which is the one that is probed with optics.

1.5 Fine structure and effective mass

At k # 0, the dispersion lift the degeneracy between bands of different j.
Near the band extrema, the Taylor expansions of the different energies are
quadratic:

OB, 1 9L
noy Lo gy2d
+ 5tk —ko) 55

En(k) = Bulho) + (k= ko) 5 + 5

+ ...



Conduction band

8N \/

Bandgap

Valence band

o (r) = &% uy i (r)

Filled VB

Figure 3: Dispersion of the valence and conduction bands in reciprocal space.

2B\
m* = h? =
(5)
The energy dependence with k£ becomes similar to the dispersion of a free
electron with an effective mass m*.

By setting

2 Optical transitions

2.1 Caculation of the dipole moment matrix element

The probability of transition between an initial state |v, k,) and a final state
e, k) is: '
Weil = —q& (¢, k|t e v, k,)
. 1 .
(e, k|t e ®T|u, k,) = —/ uyy (T) Uy e, (1) e Ke kv ko) p g3y
crystal ’

v

The crystal being periodic, we can express r as:

r=r;+R



Germanium silicon Gallium arsenide
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Figure 4: Examples of band stuctures: germanium and silicon are indirect
bandgap semiconductor. Gallium arsenide is a direct one.

where r; denotes the location of the j"unit cell and R the position within this
unit cell. The exponential functions are slowly varying in space as compared
to u. and u,. The integral over the whole crystal is broken up into a sum of
integrals over all the primitive cells

&

Wil = —
Wil 1y

Z/ quc (I‘j—l—R) Uy, (I‘j—I-R) ¢ilke—ko—ko)-(rj+R) (rj+R)d3R
unit cell

The exponential functions are replaced by their average values in each prim-
itive cell and pulled out of the integral.

nit cell

b A
(Wil = —CJVO ) etlkertoko)n / ul . (rj+R) uy i, (r;+R) (r;+R)d°R
j u

We use the periodicity of u, and u,

£ .
|Wﬁ| — _q_D Zez(kc—kv—ko)-rj/ u:,kc(R) Uy, (R) (I‘j + R)ng

vV j nit cell



& - [
“qu’ — 7qvo Z€Z(ku—ku—k[))~rj |:/ ui,k(;(R) uv,kl,(R) R ddR

j nit cell

* 3
+ I'j/ uc’kc U,U’kw(R) d R
unit cell

~\~

=0

The second integral in the brackets is equal to zero because the periodic part
the Bloch waves are orthogonals for different k. 7 eitke=*v=ko) js a sum of
oscillating terms, it is equal to zero except for k. — k, — ko = 0. Finally, we

find:

&o

(Wril = =47 k-, ko / ) i, (R) upk, (R) R d°R
unit ce

2.2 Selection rules

In reciprocal space The optical transition is allowed if
kc - kv = kO

with kg = ?\—Z In the visible range, Ay >~ 500 nm. The extension of the first

Brillouin zone is 27” with a ~ 0.5 nm. So, at the scale of the first Brillouin
zone, the transitions are vertical in the reciprocal space:

k. ~ k,

and:
Wil ~ —q— U:p(R) u,o(R) R R

unit cell

Angular momentum conservation At the I' point u.x and wu,y are eigen-
state of the angular momentum operator:

Ue0 = |5> Sz)
Uy,0 = |ja]z>

When a circularly polarized photon is absorbed, this angular momentum
is distributed between the photo-excited electron and hole according to the
selection rules determined by the band structure of the semiconductor.



s, =-1/2 s, =12

s=1/2 /
/ / Ad ==%x1
3 1 ‘/
o* o/ 9
Jj=32 . . - ,
J,=-32 j,=-1/2 J,=12 j,=32
0+
j=1/2

J,=-12  j, =12

Figure 5: SC Optical Selection Rules.

2.3 Electrons and holes

An amount of energy can promote an electron from the valence to the con-
duction band excitation, n — 1 electrons remaining in the valence band. This
equivalent to creation of one electron-hole pair.

2.4 Absorption and spontaneous emission

The transition rate per unit time between a discrete state and a continuum
is given by the Fermi’s golden rule.
2w dPZ f
I'=—|Wglp(Ey — E;) =
w Wrilp(Ey — Ei) = —,
where p(Ef — E;) is the density of states associated with the final state. For

a transition occuring between the VB and the CB, both the initial and final
states belong to a continuum.

2.5 Direct and indirect bandgaps

v In a direct bandgap semiconductor, the maximum of the valence band and
the minimum of the conduction band correspond to the same value of k in



One conduction electron One conduction electron

n -1 valence electrons 1 hole

Figure 6: n—1 negatively charged electrons in the valence band are equivalent
to one positively charged hole.

reciprocal space. On the contrary, in an indirect bandgap semiconductor,
these two extrema are located at different values of k. As a consequence, in
indirect bandgap semiconductors, the k conservation rule cannot be satisfied
for a transition between the top of the valence band and the bottom of the
conduction band. This is not a problem for light absorption process because it
can occur between the maximum of the valence band However, the interaction
with a phonon can conserve the momentum. One consequence of this, is that
indirect bandgap semiconductors are poor light-emitters.

3 Excitons

4 Nanostructures

10



ko ~ 27/ A with 4 ~ 500 nm
. k0<<kc’ku
k., k,~ 27/ a witha ~0.5nm

Transitions are vertical in reciprocal space

Direct bandgap Indirect bandgap
E(k) E (k)
BC BC
Ec N
_____ Ec
Eq
Ll Y e e ]
BV k l BV { k
0 w/a o] wa

Figure 7: Direct and Indirect Transitions.
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Master MCN

Light-matter interactions — Exercise classes

Session No. 1, Oct 4th, 2022
S. Haacke & M. Gallart

Light-induced population inversion in 2- and 3-level systems

A) The 2-level system
We consider a two-level system as depicted in figure 1, where the populations N; and N; of the
ground and excited state, respectively, are subject to spontaneous emission (A), absorption (B12)
and stimulated emission (B,1). The latter two processes are induced by an external EM field with
energy field <W(m)>.

A A E,,N,,8,
hw Ay, B, (W(w)) B, (W(w))
\ Y = E,,N,,g
Spontaneous Absorption Stimulated
emission emission

Figure 1: Two-level system with transitions as defined by the Einstein coefficients. The EM field at frequency @ is resonant
with the energy difference of the two states.

Recall on the lecture
1. When the energy density is increased, the rate of absorption increases, as much as the
rate of stimulated emission. Justify the behaviour described in figure 2, the dependence
of the populations N; and N; as a function of the energy density <W(w)>.
2. What defines the saturation density W, ?

075 |
NN
05 F———————— ==
N,/N
025 |
0 1
0 2 4 6 8
(W)W,

Figure 2: Steady-state atomic population as a function of the radiative energy density



3. Inthe limit of <W> = infinity, what would be the effective temperature T of the atoms,

assuming g1 = g2 ? Use the Boltzmann form
_Ep-E;

N, = N;e BT , where kg is the Boltzmann constant

4. In the case of a hypothetical population inversion, i.e. N, > N1, how would this
temperature change ? Conclusion ?

B) Population inversion in a 3-level system, optical gain, amplification
We now consider the 3-level system depicted in figure 3. The atomic system is excited by an EM
radiation resonant with the 0-2 transition and under a rate R. A second EM wave, resonant with the
1-2 transition allows for absorption and stimulated emission between the levels 1 and 2.
Spontaneous emission is allowed between all levels (coeff. A).

A 2
AZ] BZ] <W>
- 1
R
AIO A2O
\ 4 \4 0

Figure 3: A three-level system "pumped" by R into level 2. What is the attenuation or amplification of the EM wave W(w)
resonant with the 1-2 transition ? Is it possible to have a population inversion between 2 and 1 in this configuration ?

We assume the refractive index to be 1 in this dilute gas.
1. Derive the rate equations for the change of populations per time %,% ,%, and show
that — under steady state conditions, i.e. % = (0, the following relations hold:
N3(Az1 + B21(W)) = N1 (Ayo + B2y (W) (1)
AqoNy + Az0N; = NoR (2)

Use the fact that the sum of populations is a constant: Ny + N; + N, = N

2. Inorder to observe population inversion, N2 > N1, what does eq. (1) imply for the
coefficient A1 with respect to Ao ? Give a physical interpretation of this relation in terms
of the corresponding spontaneous emission rates.

3. Combine egs. (1) and (2) to obtain the following

NoR(A10—421)

A10(Az0+A21)+(A19+A420)Bo1 (W)

N, — Ny = (3)

We assume now that the depletion of Ng is small, meaning No=N. Assuming A1 > Az1, make
a schematic drawing of (N»>-N1)/N as a function of the energy density <W>. How does this
compare to Figure 2 ?

Calculation of the gain coefficient

We now want to derive how the energy density <W> evolves, as it propagates through the
volume of gas. In the case of population inversion, the rate of stimulated emission is higher
than the one of absorption between levels 1 and 2. Hence, one can expect that more EM
energy comes out than what is put in, since stim. emission produces two outgoing photons for
one incoming photon. This is called optical gain.



For the temporal change of the energy density <W>, the following equation derived in the

lecture still holds

= (N, = N)F(@)Bip(Whho. @)

F(w) is the normalised line shape function (a Lorentzian or a Gaussian) expressing the fact that

the atomic transition resonances have a finite broadening.

4. Under population inversion, how does <W> evolve in time ?

5. We will now establish the spatial dependence of the light intensity I(z) along the
propagation direction z. To this end, justify the following two relations given in the lecture:

I = c < W >, with c the velocity of light, and Z—; = a<aV:>

6. Combine eq. (3) and (4) to establish the following differential equation

1 1(2)) 91(2) _ R(A10—A421) 3
1(z) (1 + Is ) 8z A10(Az0+A421) NF(w)Blz hw/C = G(a)) (5)

where G (w) is the “gain coefficient”, as will become clear in the following, and the
saturation intensity is

__ CA19(Azo+Azq)
Is = (A10+A20)B (6)

7. Show that the general solution of eq. (5) is

1(z) 1(z)-1(z=0) _
In (I(Z:o)) + ” =G6G(w)z (7)

8. Consider the behaviour for two limiting cases: a) I(z) is much smaller than the
saturation value I, and b) the opposite. Draw the curve I(z)/I(0) as a function of
G(w)z, for two different values of the saturation intensity, and for two different
values of R. Comment the qualitative changes.

9. What are the parameters, which lead to a small saturation intensity I ?

Practical use in lasers

Population inversion between to quantum levels 1 and 2 - optical gain or amplification of
radiation that is resonant with the transition energy hv = E, — E;. This is used in the gain
medium of a laser. Population inversion can either be induced through optical pumping, as
in the example given here (the quantity R), or by injection of carriers through electric current
like in a semiconductor diode laser. Besides the gain medium, what are the additional
components to make a laser ?
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Light-matter interactions — Exercise classes

Session No. 2, Oct 18, 2022
S. Haacke & M. Gallart

Time-dependent perturbation theory

A) Lecture revision and interpretation.

Within time-dependent perturbation theory exposed in the lecture, the transition probability
between two state i and k is given by

i(E,-E)t
h

1. Forthe case of a two-level system, revisit the lecture material and justify the expression
for the transition probability, between the two discrete states i and f, under the action
of a sinusoidal perturbation:

‘Wﬁz , sin[(wﬁ—a))t/Z]
fi= 4n’ : (a)ﬁ—a))t/z

1|t
P = 7 Jto dt'w(t')exp

2

, with Wrp = (Ef - El)/h
Plot the result as a function of ®, and discuss the time range of validity, keeping in mind

that P;; <1.
2. For a constant perturbation, derive the result found in the lecture:

2
2 S'n[w/V]
1
. | - 2
Toon ot
2

3. Trace this probability for different values of 7, and give an intuitive description of the
time-dependent transition probability.

B) Two-level system with a constant non-resonant perturbation, full treatment: Rabi
oscillations

We explore here an alternative, more general treatment of perturbations, which, in the case of a two-
level system, is simpler in formalism and can be used without limitations to the strength/amplitude of
the perturbation interaction W. In this context, we’ll introduce the two limits of “strong” and “weak”
coupling, which are frequently used concepts for the description of light-matter interactions of QM
systems (e.g. atoms/molecules in an EM cavity).

1. We study a two-level system, defined by the orthogonal eigenstates of an unpertubed
Hamiltonian H,.

Ho|(p1>:E1‘(p1>
H0|¢2>:E2‘(P2> <(P,~

(P,>=5,~,



Under the effect of a perturbation W, the full Hamiltonian is H = H, + W. In the unperturbed
Wy W,

N L . w, W, .
basis Wis a Hermitian matrix: , with Wo; = Wio*,

The system is described by new eigenstates and eigenenergies E+ and E_:
Hlp,)=E |o,)
Hlg_)=E |p.)

Show that the new eigenenergies are given by

E, = —(E1 + Wi+ Ey + W) - \/(E1 + Wi — Ey — Wa3)? + 4|Wp,|?

It can be shown (cf. Cohen-Tannoudji, vol. 1, supplement By) that the eigenstates are given by

ip/2 +ip/2

‘W+>=cos§e" |(pl>+sm e |(p2>

+ip/2 _ 2|le| . — i
"o , with Sy e e

‘!//_> =—sin§e”"”/2‘(ol>+cosee

2. A graphical representation of the eigenenergies
The perturbation mixes states 1 and 2 due to the non-diagonal matrix elements W;j2. We will

only retain these in the following and assume W;j=W>22=0.
Introduce the quantities E,, = %(El +E;),and A = %(El — E3), and draw the two branches
of E4, as a function of A. When the energy axis of A crosses the energy axis in the ordinate
E,, the curves for E, are two hyperbolas which are symmetric to the coordinate axes. E; and
E> can be represented as straight lines with slope +1 and -1, respectively.
e Describe how the effect of the perturbation E, —E; (A>0) or E, —E, (A< 0)
changes as a function of |A]|.
e What is the value of the “resonance splitting” for A =0 ?
e Give examples of quantum mechanical systems, which show modified eigenenergies
due to such non-diagonal interaction terms (W;;).

3. The dynamic evolution
The state of the whole system is in a superposition of the eigenstates

“I"(Z‘)> _ le—iEJ/h l//+>+lue—iEj/h l//_>

In order to obtain the time-dependent evolution in the states ¢; and ¢,, we’ll assume that

the system is initially in |\P(t20)>:|‘pl>and project its evolution on the basis ¢; and ¢..
a) Express|¥(1=0)=[0) | v.)and|y.),
b) Write the time-dependence of W(t)) in this basis.
c) Show that the time-dependent probability for transition into ¢, ) is given by

Py(t)= pr ‘( _sin [\/4| z)zé]

This is called the “Rabi transition probablllty .

4. Discussion — Evolution as a function of the perturbation
a) Show that P;; oscillates with the Rabi frequency w,,_ = (E, — E_)/2h, and with
maximum amplitude sin?6. Draw the time evolution.



b) Give an interpretation of this result, and discuss the two limiting cases E; = E, and
“weak coupling” (E; — E;) > |Wy,|.

c) Which case is represented by the two curves
(a) and (b) on the right. How does the
coupling or the energy difference E;-E>
change between (a) and (b) ?

—_

LA

Probability, P (t)

Time, t T
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Session No. 3, Oct 25, 2022
S. Haacke & M. Gallart

Bloch vector representation of a two-level system

1. The most general form of a two-level system eigenstate is:

9 2 . (9 -i2
|Y) = cos (E) e™2|a) + sin (E) e 'z|b).
We note 6 the corresponding density matrix operator.
u

Let us consider the so-called Bloch vectorU = (v), the coordinates of which

w
are defined as

p
u= > (Oap + Opa)

v = %(O—ab — Opa)

1
kW = E(O_aa - O-bb)
By using the general expression of [), compute the expression of u, v and w
as a function of 6 and ¢. Show that the extremity of U spans the surface of a
sphere with radius . Draw a sketch displaying the angles 6 and ¢.

2. Now, we assume that |¢) describes the eigenstate of a two-level system
interacting with a sinusoidal electromagnetic field with angular frequency o.
The optical Bloch equations, in the absence of relaxations, are:

QO
. — ' +iwt —iwt
Oga ~— =l 7 (O-bae — Ogp€ )

QO
. — ' +iwt —iwt
O-bb —_ +l7(0-bae - O-abe )

Q

d — i 1 tiwt
Oap = +l(‘)OO_ab - 178 (Jbb - O_aa)
. . . 'Ql —iwt
Opa = ~lWo0Opq + 178 (Ubb - O_aa)

where Q1 is the Rabi frequency and wo is the Bohr frequency of the transition.
Use the rotating frame transformation to eliminate the rapid time-dependence
in the previous equation set. What is the physical meaning of this
transformation?

3. By use of the results obtained in question 2, write the differential equations
that are obeyed by i, ¥and W, the three components of U in the rotating
frame. Show that U undergoes a precession around a vector 2 whose
coordinates will be given. What is the frequency of this precession?

4. We focus on the case where the electric field frequency is resonant with the
Bohr frequency of the transition, with the system initially in the ground state



|a). Give the equation of motion of U. How is the precession modified as
compared to the case treated in question 3? What is its new frequency? What
is the time evolution of the excited state population?
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S. Haacke & M. Gallart

The transition dipole moment - transition rates - selection rules - how to
measure the TDM

1) Transition dipole moments of the 3p, — 2s transition in H atom

In the Sun’s atmosphere, the Hy emission occurs due to
emission of a gaz of hot H atoms. The transition is the r ‘
longest wavelength emission in the Balmer series: 3p, —> 2s. 15 WAk ovbhak

a)

b)

d)

Determine the transition frequency, and the wavelength
of emission.
Show that the z-component of transition dipole moment

u, = —efffw %5y, 25, 17 sin0ded dr = —Cea,

A

and determine C (e: elementary charge, ao: Bohr
radius). To this end use the hydrogenoid wavefunctions
provided in the appendix
Show that the TDM of the 3s —> 2s is zero. Try to predict a general rule for the occurrence of
TDM =0, in terms of the inversion symmetry of the wavefunctions of the initial and final
states.
These rules are termed “selection rules” since they select the quantum mechanically allowed
transitions among all those, which are energetically possible.
Is the emission due to stimulated or spontaneous emission ?

T . =B v
Evaluate the transition rate given by ~ =/ 3p25 Prad ( ) . Here, the Einstein coefficient

il

R TN & -
0 , and the spectral power density of the

8whv’/c’?

Bj,.2sis related to the total TDM by

prad =

exp(h—v
Kk

-1
sun, approximated by a black body is T) . Use 5400 K for the T of the sun’s

photosphere.

3
Compare this rate to the one of spontaneous emission given by A3 — M
p—2s 3p—2s C3

2) How can we measure the TDM ?

WEe’ll show in this exercise that the extinction coefficient or absorption cross section of any
material allows to determine the TDM, or equivalently, the oscillator strength of the measured

transition.

a)

Consider a two-level system with an initial low energy state |i > and a high-energy final state
|f >. Write down the rates of change of population in the inital and final states T;_rand




b)

d)

e)

T¢_,;, due to absorption and stimulated emission of light with the frequency v =
(Ef - Ei)/h. To this end, use the standard description with Einstein coeffients Bi.y = By,

and the spectral energy density p,-qq (V) .
Relate the Einstein coefficient to the transition dipole moment. To this end, we recall
Fermi’s golden rule for the transition rate (unit 1/s) between initial an final state due to a

I, = 27” <i|W|f>|2 p(Eﬁ)

states, reached by absorption of photons with v = (Ef - Ei)/h.

perturbation W: . Here, p(Efi) is the density of excited

Develop the expression for the transition rate using the electric dipole approximation for W,

-2
and introduce the energy density of the e.-m. field, Wo, = 230’E| .

We introduce now the energy density per Hz 0..a(v), related to the energy density by
Wem (V) = prqaa (V)dv. For a transition into a discrete state, but accounting for a large
number of photon states, expressed by 0O..a(v), with energies in the range of Ej to E; + dE,

1
T 6e i’

A P (v = E, /1)

one finds

Compare this expression with the transition rates for absorption found in the Einstein

il )

Tl 6 h?

2

equations. Justify that ,and that Bi.r = By.i.

We now relate the molecular transition rate to the reduction of O,.s due to absorption.
To this end, use Lambert-Beer’s Law to express the change of light intensity d/ due to
absorption over a sample of length dz , containing N; molecules with an absorption cross

section .. Write the same equation in terms of d0,.a, using the relation I = Ep (v)
rad

Express the intensity of light as the surface photon density 7,5. Relate the molecular
transition rate due to absorption to the change in the surface photon density 7,,/dt. Show

ca(v) o o g
that B =— , or for molecules in solution using the molar extinction coefficient &(V):

T n o hv
a hnNA 1%

- C
NB : Lambert-Beer’s law using molar extinction coefficient &(V): I(Z) = 1010 E(v)Cz ,

with C, the molar concentration (Mol/L).



Table 3.1 Spherical harmonics

/ - Yy (0, )

0 0 :—*L*

1 0 %(5)' *cos 0
+1 Fi(s ) Zsin 0 etie

2 0 j(é) *(3cos? 6 - 1)
+1 é(l-) "2 cos 0 sin 0 14
+2 1 ()Y Zsin? e+

3 0 D) (2 - 55sin’ 0) cos 0
1 vi(z-,')"’(Soosra- 1) sin 0t
+2 3 (45) % cos Osin® B o234
+3 F1 (%) Psin® g et

p = ( ZZ/nao)r

Table 3.2 Hydrogenic radial wavefunctions

n ! R,,,(r)

1 0(1s) (Z)s"'z‘)c p/2

2 029 (B s2-pler?
1@y (&) el

3 0 (3s) {g)”’# (6 - 6p + p)e—?/2
1Gp) (B 5p (4 - p)peel?
2 (3d) (()“ 1 p°c -p[2

930




The sun’s Ha line : The 3p = 2s transition in hydrogen

A. Determine the transition frequency, given the formula for energy levels (1)

11
hv = —13,6eV(¥— Z) =1,904eV =3,046x107" 7.

And thus v = 4.57 x 1014 Hz.

ey . . —_¢ ¥z y*, -2 5in O 0dr = —Cea
B. Show that the transition dipole moment is *“ e[ [Jwr, 2w, 1 sin0dododr = ~Cea,

and determine C.

The definition of the z-component of the transition dipole moment gives
Bplul2sy=—e[ [ [w*,, 2y, 1’ sin0dpdodr

with the real-valued wavefunctions given for 3p, and the 2s state,
1 r

1/3\2 1\2 2r 2r T
¥ *ap,= Yap, = Vim0, @)Raa(r) = 5 (=) 058 (o) 5= (4 =3y e 3

Vs = Vieomico(®, O)Re0(r) = == (—1)%—1 @~
= Yi—omi=0(6, r) = ——)e 2
2s = Yi=0,m1=0Y, @) 12,0 NCAC NG 0

ind, after multiplying all the prefactors,

f
.[ TTW *3/>: Iy *3X "2 Sill@d(pde dr =
00

0
21 et o, . T3 2r r\2r sue
- cos‘@smGdOJ.r 4—— || 2——|—e ° dr
T2X21 ay 5, 0 3a, a, ) 3a,
, Where the 2 comes
from the integral over ¢.

The integral over 0 is 2/3, so that
e2(” ler 2/r\H\2r*
Granclzs) = -2 | (8- +3(2) )5 e/ ar

After variable transformation

ea, *® 16 2 B
(3pzlﬂz|25>=_9X18f0 (8—?u+§u2)u4e 5u/6 4y,
Ju"e‘“" du = %n!
With ° it follows that
(3palis125) = — 5= (6)54u{8 e X5+ 550 30)
Pzllzle5) = g5 18\s) © 35 35¢

We thus obtain for the z-component of p: p, = -1,769 eao. This is indeed a dipole moment (charge x
distance) with the right order of magnitude.



C. Show that the TDM of the 3s —> 2s is zero.

For the 3s = 2s transition, the integral over 0 vanishes, and therefore (3s|u,|2s) = 0. In more general
terms, if the integral goes over a function f(r—)) with an odd symmetry, with respect to the sign inversion
of 7, f(—r—)) = —f(r‘)), then the integral is zero.

D. Is the emission due to stimulated or spontaneous emission ?

T... =B v
1) Evaluate the transition rate for stimulated emission given by ~ i~/ 3p=25 Prad ( ) . Here,

— 2
(il ] 1)
i~f = 22
the Einstein coefficient B3,.2 is related to the total TDM by 6&, , and the spectral
_ 8ahv’/c
rad (hv)
expl —1|-1
power density of the sun, approximated by a black body is kT . Use 5400 K for

the T of the sun’s photosphere.

The total transition dipole moment |(i|Z|f}|* = uZ + u3 + uZ = 3u7 since the atom is spherical.

o2
iy
Hence, the Einstein coefficient is B3)_5 = % =1.16 10" )T m3s2
0

For T= 5400 K, and v = 4.57 x 10* Hz, we find pra = 1.037 10°° J/(Hz m3).

It follows for the transition rate of stimulated emission Tsy = B3p_550rqq=1.20 10°s™,

3
2) Compare this rate to the one of spontaneous emission given by A, — M
p—2s 3p—>2s c3

Indeed, spontaneous emission does not involve the radiation field, and the transition rate is simply
Tsp = A3p—25-
8mhv3

We find —— = 5.87 10 Jsm?, and thus Az,_,s =6.82 10" s™.
Tsp is roughly 50 times higher than Tse | The atoms recombine more frequently by spont. emission
than by stim. emission. This is true in general, unless the radiation field is very intense and
enhances stim. emission, as it is the case in a laser (the laser cavity creates a very high energy

density).

The average lifetime of the atoms in the 3p level can therefore be deduced from the simple

relation: T = — = 14.7 ns. This is a typical order of magnitude for radiative lifetimes of atoms and
sp
molecules (2-20 ns for allowed an intense transitions).
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Vibrational mid-IR spectroscopy - Franck-Condon principle — Franck-Condon factors for vibronic
transitions — absorption spectra of polyatomic molecules

Background and motivation
What determines the spectral width of absorption and emission spectra of polyatomic molecules ?
Many examples like figure 2 exist, where the spectra are periodically modulated.

Task 1: Selection rules in vibrational mid-IR spectroscopy - the harmonic
oscillator

The IR absorption spectrum of benzene (below, https://sdbs.db.aist.go.jp/sdbs/cgi-
bin/direct_frame_top.cgi) shows only one peak for the C=C vibration (1479 cm™), although many
transitions n=0 2 n’, called “overtones”, are energetically possible. For a harmonic oscillator, these
should appear at 2 x 1479 cm™, 3x 1479 cm™ and so on. Why aren’t they observed ?

a) Find out (Google) where this energy scale in cm™ comes from. In spectroscopy, this unit is
called “wave numbers” or “inverse centimeters”.

b) What are the different peaks in the spectrum due to ?

c) Derive the selection rules for IR absorption (transitions in the ground state harmonic
oscillator), by using the recursion and orthogonality properties of Hermitian polynomials (cf.

lecture).
3091 a4z 1393 84
3072 49 1176 86
R 4
e a Wavenumber (cm™)
1479 20 f
Figure 1: Mid-IR transmission spectrum of benzene in gas phase. Energy scale in cm™ (“wave
numbers”).

Task 2 : Vibronic progressions in UV/VIS spectra
Calculate approximately the energy difference of the peaks labeled (0-0’), (0-1’), (0-2’), (0-3’), and
determine the corresponding average frequency (in cm™). What kind of molecular excitation
does this frequency correspond to ?



WAVELENGTH (nm)

3 350 370 390 410 450 490 530 570
*10 T T e = B R ] T T e

T
32t (0-07)

24| Perylene (0-1)
in Benzene

16}~ Absorption Emission |
(0-2')

" (0-3)

=i | 1 1 1
28800 26B00 24800 22800 20800 18800
WAVENUMBER (cm™1)

https://chemistry.stackexchange.com/questions/76942/calculating-the-uv-vis-spectrum-of-perylene

Figure 2: Absorption and emission spectra of perylene in the solvent benzene.

The absorption and emission transitions occur between electronic states (cf. fig. 3), the potential
energy surfaces of which are bound potentials. These can be approximated by harmonic
potentials describing the molecular vibrations along specific bonds (e.g. C=C, or C-C). These
molecular vibrations are quantized, with eigenenergies E,, = Aw(v + 1/2), according to the

¢ (R) =N H, (\/;x)e"”z/z
JiE

quantum number v, and with the wavefunction , with o defined by

the relevant reduced mass p and the spring constant k: @ = P and H.(vax) the Hermitian
1/2
polynomials. The normalization constantis N,, = (2%, %)

Radiationless

Energy

\ 7 \
3 3
2 e 2
1 1
v'=0 o]
7 Fluorescence
00102030 00 102030 Am of L4 -
[, L . ==

|y

D

cm! — cm™! ——

Figure 3: Schematic of the vibronic transitions in absorption (left) and emission (right).

More in detail the total wavefunction is described by an electronic and a vibrational part:
) =[ev)
¥(7.R)=v.(7.R)o, (£

Oppenheimer approximation, based on the fact that nuclei move much slower than electrons.

, with € indexing the electronic state. This is the Born-



The transition dipole moment then reads:

(e"v'| e,v>:'[(o: {Jl// 1% /ll// (r R)a’3 }go (q)d31§

The Franck-Condon principle, assumes that during light absorption the atoms do not move (R=

const.), leading to factorisation of the integrals:

—

£.v) {fl// rR)uy/ (rR d3 }Jqo R (f{)a”f{
_ {Jw:,(ﬁf{)ﬁy/g (F,fe)aﬁf}x F(v'v)

The electronic part includes the selection rules (symmetry of electronic wavefunctions), while

(e

F(Vv,v), the Franck-Condon factor, modulates the transition strength giving rise to the periodic
modulations observed in fig.2. We will explicitely calculate them in the following.

Task 3: Calculate the FC factors F(v,v)

a) Vv'=0 - v=0. The v'=0 vibrational state in the electronic ground state is

o 1/4

=4 R-R ) /2

¢ (R)= (—J e
T , with Re, the equilibrium bond length in the electronic ground
1/4

9., (R)= (g] el

state,and " T , the one for the excited state with Q., the excited state

equilibrium bond length (fig. 2). We assume the same o, meaning the same
restoring force constant k in both electronic states. Show that F(O' O) R0 )2/4
= e e e

—ax dx_(
For this use - . Plot F(0’,0) as a function of A = VaAR = vVa (R, — Q,) and
justify its shape.

QN

b) Vv'=0 2 v=1. The v=1 vibrational state in the electronic excited state is
a(R=Qe)? a(R-Q¢)?

Pver (B) = (9 R - 0™ T = v2(9) " Va R - ) e

Plo)= L2 g rer
Show that , and discuss its shape as a function of A
compared to F(0’,0).

c) If we introduce the displacement of the two potential energy curves A= vVa (R, — Q,), and

the Huang-Rhys factors as S = A? /2, one can show that for transitions to higher vibrational
v
[Feow )| = S s

states, the square of the Franck-Condon factors are -’ . Justify this
result on the basis of the form of the Hermitian polynomials.

d) For the emission process, the transitions occur from v=0 = V' (fig. 2), since vibrational
relaxation in the excited state leads to population only of v=0 (in the limit Aw > kgT).

[Feow )| =

Justify that



Y| Feon] =1

e) Optional: Show that v , by using the fact that the vibrational wavefunctions
form a complete orthonormal basis set.
Task 4: Building a theoretical absorption spectrum including the FC factors
Figure 4a displays the situation for S=1, for the displaced harmonic oscillators. Figure 4b gives a

schematic absorption spectrum. Determine the energy (in cm™) of the main parameters used:
the electronic transition energy AE = E(S; — Sj), and the vibrational quantum Aw.

20 -
15 ~ A I |
0.4 -
>
o
810_ - ‘é\ 0.3 B
L /2]
S 0.2 -
5] Vertical Transition - € 01- -
TN B P I - —
0 T T I T T I I I I .
8 9 10 11 12,
- H 3 -
4 2 0 2 4 6 Absorption wavenumber (x10° cm )

Nuclear Displacement

Figure 4: a: Alignment of excited and ground state harmonic potentials for S=1; b: Schematic absorption
spectrum for the situation depicted in (a). The vibronic transitions are broadened by a Gaussion function.

a) Build the absorption and emission spectra using the same parameters, but for S=2.
b) Determine the Stokes shift, the difference between the maximum of absorption and

emission spectra (cf. lecture), for S=2.
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Light-Matter interactions - Exercise classes
Sessions No. 8, Dec 6, 2022
S. Haacke & M. Gallart

Rotational & Vibrational mid-IR spectroscopy

Background and motivation
Understand the rotational fine structure observed in mid-IR absorption of a di-atomic molecule
in a dilute gas.

Figure 1 presents the mid-IR absorption spectrum of H-Cl in diluted gas phase, with increasing energy
from right to left. Every peak appears as a doublet. The spectral lines are determined in cm™. The
values for the four central peaks are v = 2906,24 ; 2904,11 ; 2865,10 ; 2863,02 cm™

q q r‘t\"””i‘

Vv (em™)

Figure 1: Mid-IR transmission spectrum of HCl in gas phase. Energy scale in cm™ (“wave
numbers”).

Question 1: Explain the origin of the absorption peaks

The spectral range is in the mid-infrared (3-30 um), which means that the photon energy is not large
enough to induce transitions between electronic states. The observed transitions are between
guantum states in the electronic ground state only.

a) Recall the eigenergies of a di-atomic molecule including the vibrational and rotational
eigenstates, using the quantum numbers n (harmonic oscillator) and J (rotation of a molecule
with moment of inertia /). Make a schematic diagram of the quantum levels involved in the
spectral transitions.

b) Within the dipolar approximation, recall the selection rules for vibrational and rotational
transitions, between the eigenstates.

c) The “R branch” corresponds to transitions with AJ=+1 and the “P branch” to Al=-1. Where
are these branches located in the spectrum ?

d) The origin of the doublet structure is due to an “isotope effect”. Indeed Cl is present in both
the **Cl and *’Cl isotopes. How does the isotope effect change the transition energies ?



e) The intensity of the peaks is given by the absorption A=1 -T. And A is proportional to the
number of molecules in the ground state: N (n=0) = f(J). Find a formula expressing N(J) as a
function of temperature T and the degeneracy of the rotational levels g;. What is the origin of
the decreasing peak intensity on both sides of the spectrum ?

f)  What spectral resolution AL/A is required to resolve the doublet structure ?

Question 2 : Determine the molecular parameters

. . . h2
a) Show that, for the intense peaks in the doublets, the rotational constant B =

8121
10,28 cm™. What is the value of the moment of inertia I ?
b) Calculate the reduced mass for 3>Cl and calculate the interatomic radius r from the value of /.
c) From the vibrational frequency m, show that the force constant k is equal to 476 Nm™. N.B.
Use the first peak of the R band to determine the vibrational transition frequency Aw.

is equal to



Master Nanophysics & Condensed Matter January 25, 2022

Exam in “Light-matter interactions”
S. Haacke & M. Gallart

Test duration: 3 hours

I- Spectroscopy of the tetracene monomer

The figure below displays the normalized steady state absorption (black) overlapped
with the steady state fluorescence (red) of the tetracene monomer. In this part, we
will interpret these experimental results by using what we know about the
spectroscopy of diatomic molecules.

1.0
08 OOOO
z
S 0.6 |- Absorption Emission
=
®
N 04
;
Z 02

0.0 L
350 400 450 500 550 600 650
Wavelength (nm)
Figure 1 :Absorption(black line) and emission (red line) of tetracene in a toluene solution?.

1- Give the formal expression of the wavefunctions associated with the electronic
states of a diatomic molecule. Which quantum numbers label each component of the
total wavefunction and of which degree of freedom are they characteristic?

2- Describe the initial and final states that are implied in the optical transitions
responsible for the spectra presented in the figure 1. Draw a sketch of these energy
levels labeled with the right quantum numbers.

3- Explain in few words what is the Franck-Condon approximation. Using the simple
theoretical model that you know, outline the concept and general formulas by which
the intensity of each individual spectral line can be calculated, both in absorption
and emission.

4- The individual lines within each spectrum are split by a constant amount of energy
hwo. What is this energy quantum characteristic of? Describe now qualitatively the
scenario leading, after light-absorption from the molecular ground state, to light
emission from an excited state. Specify which relaxation processes or transitions
between the quantum states are radiative or non-radiative. How can one explain the
mirror symmetry between both spectra of figure 1?

1 Burdett, Jonathan & Mueller, Astrid & Gosztola, David & Bardeen, Christopher. (2010). Excited state dynamics
in solid and monomeric tetracene: The roles of superradiance and exciton fission. The Journal of chemical
physics. 133. 144506. 10.1063/1.3495764.
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II- Einstein equations and perturbative approach

The Einstein model of light-matter interaction is a phenomenological model that
describes the radiation of a two-level system at the thermal equilibrium. We consider
here an ensemble of N two-level atoms with ground and excited states E, and Ey,
respectively, and such as Ep - Eq = hoo. We denote the corresponding populations Ng
and N,. The rate equation describing the time evolution of the excited population in

interaction with a thermal field, with spectral density u(w), is:

dN,
? = —ANb — Bbau(wo)Nb + Babu(wO)Na (1)

1- Explain the meaning of the different terms occurring in equation (1) and indicate
their respective units. Write the condition of population conservation (closed system).

2- In the stationary regime, express the ratio N,/ N, at the thermal equilibrium. Then,
find the temperature dependent general relation between A, Bpa, Bay. First, consider
the limit of high temperatures when kgT >> hwo to deduce that Bya = Ba», = B. Then,
use this result and the fact that the field is thermal to write the equation connecting
A and B.
We remind the spectral density of the black body radiation as a function of @:
hw?3 1

2,3 hw

T

u(w) =

3- According to the time-dependent perturbation theory, the probability of transition
between an initial state|i) with energy E; and a final state |f) with energy Er, when a
perturbation W is applied for a duration tis:

1 2
Pis(t) = nz

t
fdﬂﬂW@vme@rﬂWm
0

Express the transition probability per unit frequency dP., from a to b under the
influence of the electric dipole operator related to an electric field E(w) linearly
polarized along the z-direction. Assume the resonant approximation and discuss its
validity.

4- By integrating dP., over all the frequencies w and by averaging the dipole
orientation over all the directions of space, show that the time-dependent probability
of transition is

_ mq*rg,

P -
b 3¢,h2

u(wo)t

We give:

. 2
o [sin(wy — w) t/2

] = 2mt§(wy —
£ (wy — w)t/2 ] T8 (@ = )

5- Express the absorption probability per unit time. By drawing a parallel between
the present probability and the phenomenological constant of the Einstein’s rate
equations, deduce the expression for the spontaneous emission rate of the two-level
system.
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III- Mid-IR spectroscopy: Vibrational and rotational-vibrational spectroscopy

Figure 2 shows the mid-IR absorption spectrum of CO in the gas phase, measured
with poor spectral resolution. It shows two broad bands, one centered at 2143 cm-!
and a second at 4260 cm-1.

1- Convert these energies into wavelengths and
energies in Joule. |

We will use cm! as the energy scale for the \
following questions.

2- What is the selection rule for transitions
between quantum states of an harmonic I
oscillator? Indicate possible reasons for the

. . /| “'(L
observation of the second absorption band at iz =t
4260 cm-1. 2000 3000 4000 cm

Figure 2: Absorption spectrum of CO in the gas phase

Figure 3 shows the mid-IR transmission spectrumof ., o
HBr. The two central peaks are found at 2539.5 and l ' | | Il T ﬂ m
2570.4 cm-l. ‘ ' ' ’ ‘

3- Make a schematic drawing of the quantum states
and energy levels involved in these transitions. £
Distinguish vibrational and rotational quantum
states, and recall the precise formulas for their

2400 2500 2600 2700
v lem!) ——

energies as a function of v, the vibrational quantum

number, and J, the rotational quantum number. Figure 3: Mid-IR transmission spectrum of HBr in
gas phase.

4- Recall the selection rules for rotational transitions, and explain the origin of the
observed peaks.

5- Give the formula for the transition energies observed, as a function of the
vibrational quantum Aw and of the rotational constant B.

6- Determine B (in cm-!), and translate it into B = Bhc, the rotational constant in
Joule. Here h is Planck’s constant (6.62 x10-34 Js) and c the speed of light in cm/s.
The molar masses are My = 1,008 g/mol, and Mg; = 79,94 g/mol. Deduce the atomic
masses myu and mg;, and determine the interatomic distance Ru.g: from B.

7- Determine the energy of the vibrational quantum Aw (in cm-1). Translate it into
Joule, outline the formulas for determining the molecules spring constant k.

8- How would the shape of the spectra change when the temperature is lowered to

-1
T= 4 K? How would the ratio R = T(2539'—56m_)
T(2377 cm™1)

left change? Justify your answer.

of the peaks in the center and at the far-

Avogadro constant: Na = 6,02 x1023
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Exam in “Light-matter interaction”
S. Haacke & M. Gallart

Test duration: 3 hours

I- Bloch vector representation of a two-level system

1. The most general form of a two-level system eigenstate is:

[Y) = cos (g) e+i§|a) + sin (g) e_i%b).

We note & the corresponding density matrix operator.
u

Let us consider the so-called Bloch vector U<v>, the coordinates of which are
w
defined as

1
U=z (Gap + Oba)
1

(
|
{ v = z_i(aab — Opq)
|

1
kW = 7 (Gaa — Obb)

By using the general expression of [), compute the expression of u, v and w as a

function of 6 and ¢. Show that the extremity of U spans the surface of a sphere with
radius %2. Draw a sketch displaying the angles 0 and ¢.

2. Now, we assume that |¢) describes the eigenstate of a two-level system
interacting with a sinusoidal electromagnetic field with angular frequency ®. The
optical Bloch equations, in the absence of relaxations, are:

O, . .

. — ; +iwt —iwt

Oaa = -1 7 (Ubae — Ogp€ )
O, . .

. — ; +iwt —iwt

Opp = +l7(0’ba€ — Ogp€ )

Q ..

. — : : +iwt

Ogp = TlwgOgp —1 2 e (Ubb - Gaa)

. _ . . Ql —iwt

Opa = ~lWoOpg + L—-e (Opp — Oaa)

where Q; is the Rabi frequency and wo is the Bohr frequency of the transition.
Use the rotating frame transformation to eliminate the rapid time-dependence in
the previous equation set. What is the physical meaning of this transformation?

3. By use of the results obtained in question 2, write the differential equations that
are obeyed by i, ¥and W, the three components of U in the rotating frame. Show
that U undergoes a precession around a vector 2 whose coordinates will be given.
What is the frequency of this precession?

4. We focus on the case where the electric field frequency is resonant with the Bohr
frequency of the transition, with the system initially in the ground state |a). Give
the equation of motion of U. How is the precession modified as compared to the
case treated in question 3? What is its new frequency? What is the time evolution of
the excited state population?
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II- Optical pumping

We will study in this exercise the effect of “optical pumping” of an atom. We will
show that the selection rules governing the interaction of an atom with circularly
polarized light lead, under continuous illumination of the ground-to-excited state
transition, to a non-equilibrium distribution of population among the sub-levels of
the ground state.

We consider an atomic transition between a ground state of total angular
momentum J, = %2 and an excited state with total angular momentum J, = %. In
the absence of incident light, the two ground-state sub-levels, which have the same
energies, are equally populated: half of the atoms are initially in each of the states
mq = =Y, +%. The quantization axis is chosen to be along the z direction.

m, = -1/2 m, = +1/2 ]
b

J

m, =-1/2 m, = +1/2 a

Figure 1 : diagram of ground and excited states of the studied atom/

1. The population of atoms interacts with a o* circularly polarized light, the
frequency of which is resonant with the J, = 1/2 — J, = 1/2 transition. Which one
of the two possible excited states is populated through light absorption? Justify
your answer by discussing the optical selection rules.

2. We assume that atoms can relax from the excited state determined in question 2
to their ground state by spontaneous emission. What are the possible final ground-
states of the relaxation? What is the polarization of the emitted light?

3. Under continuous illumination with o* circularly polarized light a steady state is
reached. Experimentally it is found that the incoming light is no longer absorbed.
The progress towards the steady state can be monitored by measuring the
transmission of the pumping light (see figure below). As a consequence, the o*
circularly polarized emission goes to zero intensity. What does this suggest for the
population of the ground state levels? Explain the absorption-emission process that
is responsible for the evolution of the system towards this non-equilibrium optically
pumped distribution in the ground state?

e

Figure 2 : Temporal evolution of the transmitted light intensity. In the steady-state the absorption goes to zero, i.e. I=ly.

t
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III- Rotation-vibration spectrum Diatomic molecules
The nuclear Hamiltonian of a diatomic molecule is written:
h? 1 92 h?2

“ouror? T 2m?

L +V(r)

where r is the inter-nuclear distance, and u is the reduced mass of the two-body
system. L is the angular momentum operator and V(r) is the potential energy of
interaction that is assumed to be harmonic.

1. By looking for the solution of the corresponding Schrédinger equation under the
form:

1
Xn,l,m (T, 19' §0) = ; Un (r)Ylm (7-9: §0)

where u,(r) is the eigenfunction of a one-dimensional harmonic oscillator and
Y" (¥, @) is a spherical harmonic, compute the expression of the energy eigenvalues
E,; (assume that the centrifugal energy does not depend on r and is equal to its
value evaluated at the average inter-nuclear distance ro). Identify the vibrational
and rotational terms. Make a schematic diagram of the energy spectrum.

2. Within the dipolar approximation, recall the selection rules for vibrational and
rotational transitions, between the eigenstates labelled by n (harmonic oscillator)
and [ (rotation of a molecule with moment of inertia ).

3. The figure below displays the infrared absorption spectrum of HBr. Label the
absorption lines with vibrational and rotational quantum numbers.

fas)
<
a

o
e

LU L.J, .LU,L
0.300 0.310 0.320 0.330 0.340
Energy (eV)

0.3083
0.3105
0.3126
0.3226

0.3147
0.3207

0.3187

Figure 3 : Sketch of the vibration-rotation spectrum of HBr

4. What is the origin of the decreasing peak intensity on both sides of the
spectrum?
2

5. Show that, for the intense peaks in the doublets, the rotational constant B = % is

equal to * 1 meV. What is the value of the moment of inertia I?

6. Calculate the reduced mass and calculate the interatomic radius Ro from the
value of L

7. From the vibrational frequency w, show that the force constant k is equal to
379 Nm-l(use the first peak of the R band to determine the vibrational transition
frequency hw).

Mg, =80 u; Mp=1uwith 1 u=1.66x1027 kg

3
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Exam in “Light-matter interaction”
S. Haacke & M. Gallart

Test duration: 2 hours

I- Coherent transients and n/2-pulses

We consider a two-level system which stationary eigenenergies and eigenstates are noted
{E,, E;} and {|1),|2)} respectively. We set E, — E; = hw,, E; being the ground-state energy. The
system is in interaction with a quasi-resonant electromagnetic field E,cos(wt). The solution
of the time-dependent problem is expanded on the basis of the stationary states:

[W(©) = C1(D)e'z'|1) + To(He "2 emiw0t|2)

with
1(&) = cos > lﬂsm >
Ty = —i s (ﬂt)
5 (t) = lﬂsm >

where £, is the Rabi frequency, 2 the generalized Rabi frequency and 4 the detuning.
1- Give the expressions of 2 and 4.

For the remainder, we assume that the incident field is tuned exactly on resonance.
2- Write the corresponding expressions of C,(t), C,(t) and | (t)).

We consider the situation described in 2 but we suppose now that the electromagnetic field
is applied under the form of a g—pulse switched on at t = 0, the system being initially in the

ground-state.

3- Define what a %—pulse is. Calculate the numerical values of C;(t) and C,(t) that
characterize the new state of the system after the interaction with the %—pulse. What are the

probabilities for the system to be in state |1), in state |2) ? Conclusion?

The system is still in the state prepared in 3. The operator associated with the electric dipole
0 d)

moment is written D = ( 4 0

4- Explain why D does not present any diagonal terms. Calculate (D), the expectation value of
D. How does it evolve in time? Use this result to explain what a coherent transient is.

II- Optical transitions in a bulk semiconductor

We plan to establish the optical selection rules for an optical transition, under the influence
of an electric field Eocos{a)t—iﬁo-?}, between the valence band (E, |1/),,,kv(?))) and the
conduction band (E, |1/)C_kc(F))) of a bulk semiconductor that presents a direct bandgap

located at k = 0. For simplicity, we assume that the potential seen by electrons in the crystal
lattice is invariant under a translation of vector d along the three directions of space.

1/2
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1- What is a direct bandgap semiconductor? What is an indirect bandgap semiconductor?

The periodic parts of the wave-functions are noted uv_Ev(F) and ucﬁc(?) for the valence band

and the conduction band respectively.

2- Write the total wave-functions |¢C’kc(F)> and W)v,kv(F)) associated with the electronic bands
considered here. What are the properties ofuy}v(F) and ”c,%c(?) ? How are expanded the

corresponding energies E: and Ey in the reciprocal space ?

We denote |W,,| the matrix element of the dipole moment operator —qE,# -exp{—iEO-F}
evaluated between [y, (¥)) and i), (7).

3- What is the general definition of optical selection rules associated with the transition
between two electronic states?

4- Describe qualitatively the main steps of the procedure that is used to write |W,,| in a
factorized form:

|Vch| X f(Ev’_k)C) xXg (uv,ﬁy’uc,ﬁc)

Where f (Ev,‘EC) and g (“u,ﬁv'”c}c) will be made explicit. What properties of the wave-function

enable one to obtain this result? What approximations are made?
We assume that the wavelength of the incident light is in the visible spectral range.

5- Discuss the possibility of a transition between the valence band and the conduction band
as a function of the initial and final electronic wave-vectors. What are the practical
consequences when comparing optical properties of indirect and direct bandgap
semiconductors?

We are now interested in a transition occurring at k ~ 0. In this case, uvﬁv(F)and uC’EC(F) are
eigenstates of the total angular momentum operator: uv,E,,:ﬁ(F) =1j;j,) and uc,EC=6(7) =|s;s,).
The incident light is circularly polarized in the plane perpendicular to the direction of

quantization. The initial state is a valence state characterized by|j;j,), the final state is a
conduction state characterized by |s;s,).

6- What are the possible values of s, as a function of j, and of the light helicity?

The valence band presents a p-like (£ = 1) symmetry while the conduction band is s-like
(¢ = 0). This results in the existence of 6 valence states and 2 conduction states.

7- Draw a sketch of the different states at k = 0 with the corresponding values of |J; j,) and
Is;s,). Indicate the allowed transitions in the case of a circularly polarized light.

2/2
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Exam in “Light-matter interaction”

Test duration: 2 hours

I- Course evaluation

1- Vibronic transitions

Figure I-1 presents absorption and emission spectra of a molecule for different values of the
so-called Huang-Rhys factor S.

S=0.5 S=1 S=2
n - |

Figure I-1
What are vibronic transitions? What are the quantum states implied in these transitions?
Draw a sketch of these states. What is the form of the related wave-functions? Give an
outline of the calculation of the transition probability. What is the Franck-Condon principle?
What the spacing between the sharp lines in the spectrum is related to? What is
characterized by the Huang-Rhys factor S? Comment the evolution of spectra with S. What
would the spectrum look like if S = 0.

2- Rotation vibration
Figure I-2 shows the vibration absorption spectrum of HBr

Sketch of the vibration-rotation spectrum of HBr

RN
,Ll Ldbh 'm

0.300 0.310 0.320 0.330 0.340
Energy (eV)

Figure I-2

What are the molecule states that are implied if the transitions presented in figure 2. How
are they calculated? Plot a sketch of these states labelled with the corresponding quantum
numbers. Detail the physical meaning of these quantum numbers. What are the eigen
energies? What is the condition for observing optically induced rotation-vibration transitions
in a diatomic molecule? When this condition is satisfied, what are the optical selection
rules? Draw the corresponding allowed transitions in the previous sketch of the energy
spectrum.



II- Exercise
Quantum wells with infinite barrier — selection rules for dipolar transitions

We consider a heterostructure made of an alternation of nanometric layers of semiconductor
materials with different bandgaps. This artificial edifice presents discontinuities in the band
profile where the high band gap material defines barriers along the growth direction z (cf.
figure II-1). Electrons and holes are confined in the so-formed quantum wells, but they are
free to move in the (x,y) plane. Electrons are confined in the QW formed in the conduction
band and holes form similar quantum states in the valence band of the low band gap
material.

+00 +o00

Conduction band

-~ r
2

Valence band

-

= =
-0 -00

Figure II-1

a) Justify that electron and hole wave-functions can be approximated by the solutions
of the stationary Schrodinger equation of a QW with infinite barriers:

¥ (7) = Nipn () e'mebs

V (2/d) cos (knz) Ifn odd .

on(2) = ,x €1[0,d]; ¢, (2) =0 elsewhere ; k, = =n

V (2/d)sin (k,z) If n even. d

b) The effective mass of electrons m." is smaller than the one of hole my*. Draw the
energy levels of electrons and holes.

c) Compute the selection rules for interband transitions between the highest hole
subband nr=1 and all the electron levels n. > 1.

(N:) =€ <‘r9nh:1 (:h) |:|‘r7ng (3c)>

d) Under the application of an electric field, the QW potential energies change as
indicated in the fig. II-2.



400

+o00

Conduction band
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| | |

] d

2 2
Valence band

Figure II-2

Discuss qualitatively how the E-field induced asymmetry will change the
shape of the envelope functions ¢(z) and consequently, the selection rules.

Will the dipole moment of the ny=1 to n.=1 transition increase?

Will new transition appear in the absorption spectrum?
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Exam in “Light-matter interaction”
S. Haacke & M. Gallart

Test duration: 2 hours

I- Atom and two-level system: lifetime of an exited state

We consider an atom, located at r =r,, approximated by a two-level system whose
stationary eigenenergies and eigenstates are noted {E;, E,} and {|1), |2)} respectively. We set
E, — E; = hw,, E; being the ground-state energy and w, > 0. The system is in interaction with
a quasi-resonant electromagnetic field E;sin(wt). The matrix element of the electric dipole
Hamiltonian between |1) and |2) is Wy, = —(2|D.&|1)E(ry) = —dE(ry) = hQ;.

1- What is the physical meaning of Q,? Why does W,, depend only on ry and not on the
spatial extension of the atom?

2- The system is initially in the ground state |1). Use the first-order time dependent
perturbation theory to express the probability P, (t, w) for the atom to be in the state |2) after
an interaction of duration t with the field. You will use the resonant approximation, discuss
its validity.

3- Draw a sketch of N, < P;,(t,w) as a function of ®, and for a given value of t. What is the
physical cause of the broadening Aw of this curve? Discuss its evolution with the interaction
time t.

4- Now, to take into account the lifetime of the excited sate, we consider that the population
N, of level |2) can decay to level |[1) by an irreversible coupling to a continuum of states. We
are interested here neither in the nature nor in the modeling of this continuum, but only on
the consequence of its existence on the population of the excited state. So, we suppose that
the EM-field is switched off at time t = 0, so that N,(t) evolves only because of the coupling
with the continuum with an initial condition N,(0) =1 at t = 0. Supposing that the decay
probability per unit time is constant and denoted I', write and integrate the rate equation to
obtain the explicit form of the function F(t) that expresses the evolution of N,(t) in the
absence of absorption.

5- We come back to the full problem where the population N, is fed by light absorption from

the ground state with probability P;,(t, w) and decays with a probability per unit time I'.

2
+o0 1 a7

Show that, in the stationary regime, N, = [ P, (t', w) F(t’)dt’oczm. Plot N,as a
—Wo

function of w. Comment the differences between this solution and the result obtained in
question 3. What is the physical cause of the resonance broadening?

6- The same problem can be solved with a non-perturbative treatment. A similar reasoning
LS S,
2 (w-wg)+r2+02’
What are the limiting values of N, when (w — wy) + I'? » Q% and (w — wy) + I'? K Q2. For large
values of Q,, what physical process appears here that was absent in the perturbative
description? Comment.

leads to N, « What new parameter acts now on the width of the resonance?

1/3
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7- Use your answers to questions 5 and 6 to illustrate the different results for N2 obtained
with the perturbative and the non-perturbative methods, and discuss when one or the other
should be used.

II- Optical transitions in a two-dimensional quantum well
A- Square quantum well

Growth techniques such molecular beam epitaxy allows to synthetize semiconductors
quantum wells, made of nanometric layers of compounds with different bandgap energies, in
which electrons and holes are confined along the growth axis. The carriers are free to
propagate in the (x,y) plane but are submitted to a square potential well in the z-direction
that arises from the band discontinuities between the involved materials (Figure 1). One can
show that the wavefunctions can be written

5,1{,,) = Ne i? £7(2) Uy, ()

|¢2kc) = Ne~ikip f&1(2) w (7) and

for the conduction and valence bands respectively, where the index n(p) is the quantum
number associated with n(p) confined state in the well while f,(z) (f,(2))is the so-called
envelope function that describes the spatial localization of the corresponding charge carrier
in the quantum well. To simplify the problem and to handle analytical expressions, we
choose to make the assumption that the barrier height is infinite.

400 400

n

Conduction band

b4
1 1 |
o d
2 2
Valence band
el =
Figure 1

1- The envelope function introduced above is the solution of the Schrédinger equation of a
single particle in a square quantum well with infinite barriers. Write and solve the equation
to express f*(z)and fF(z) with the right boundary conditions. Deduce the eigen-energies

EC"(Eﬁ) and EP (iﬁﬁ’) of electrons and holes, respectively.

2- We plan to establish the optical selection rules for an optical transition, under the
influence of the electric field of light Eocos{wt — iEO -F}, between a state EY (Eﬁ’) in the valence
band and a state EC"(Eﬁ) in the conduction band of this quantum well. By following the same
procedure as the one used in the lecture for direct-bandgap bulk semiconductors, express
the quantum well selection rules related to an initial state (p, ﬁﬁ’) and a final state (n, Eﬁ).
Highlight the fact that some transitions are strictly forbidden for reasons of symmetry.

B- Quantum well in a static electric field

Under the application of an external static electric field, the QW potential energies change as
indicated in the Figure 2.

2/3
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1- Describe qualitatively the new profile of the envelope functions f*(z)and fF(z). Draw a
sketch of these wavefunctions for the two first confined state in the quantum well. How are
the optical selection rule that connect n and p modified? Do any forbidden transitions still
exist?

+00
+oo 7
Conduction band
z
1 1 |
] d
2 2
K‘ Valence band
Figure 2

2- We wish to draw a parallel between this problem and the optical properties of diatomic
molecules as they were described during the lecture. Draw a sketch of the ground and
excited electronic states of a diatomic molecule and indicate how optical transitions occur
between vibronic states. Give a picture of the possible spectra for absorption and emission
of light.

3- By comparing your answers to B-1 and B-2, can you deduce any similarities between the

optical transitions in a quantum well submitted to a static electric field and the optical
transitions between the vibronic states of a diatomic molecule.
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