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I - Coherent transients and π/2-pulses

We consider a two-level system which stationary eigenenergies and eigenstates are noted {E2, E1}
and {|1〉 , |2〉} respectively. We set E2−E1 = ~ω0, E1 being the ground-state energy. The system
is in interaction with a quasi-resonant electromagnetic field E0 cos(ωt). The solution of the time-
dependent problem is expanded on the basis of the stationary states:

|ψ(t)〉 = C̃1(t)e
iδ/2t |1〉+ C̃2(t)e

−iδ/2te−iω0t |2〉

with 
C̃1(t) = cos

(
Ω

2
t

)
− i δ

Ω
sin

(
Ω

2
t

)
C̃2(t) = −iΩ1

Ω
sin

(
Ω

2
t

)
where Ω1 is the Rabi frequency, Ω the generalized Rabi frequency and δ the detuning.

1. Give the expressions of Ω and δ. For the remainder, we assume that the incident field is
tuned exactly on resonance.

We can write

Ω =
√

Ω2
1 + δ2

but, if we are exactly on resonance, we have δ = 0.

2. Write the corresponding expressions of C̃1(t), C̃2(t) and |ψ(t)〉.

C̃1(t) = cos

(
Ω1

2
t

)
, C̃2(t) = −i sin

(
Ω1

2
t

)
leading to,

|ψ〉 (t) = cos

(
Ω1

2
t

)
|1〉 − i sin

(
Ω1

2
t

)
e−iω0t |2〉

We consider the situation described in 2 but we suppose now that the electromagnetic field is
applied under the form of a π/2-pulse switched on at t = 0, the system being initially in the
ground-state.

3. Define what a π/2-pulse is. Calculate the numerical values of C̃1(t) and C̃2(t) that charac-
terize the new state of the system after the interaction with the π/2-pulse. What are the
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probabilities for the system to be in state |1〉, in state |2〉 ? Conclusion ?

A π/2-pulse is a pulse that is switched on at t = 0 and switched off at t = π/2Ω1. Thus,

C̃1(t) = cos

(
Ω1

2

π

2Ω1

t

)
=

1√
2
, C̃2(t) = −i sin

(
Ω1

2

π

2Ω1

t

)
= − 1√

2

Consequently,

|ψ(t)〉 =
1√
2
|1〉 − i√

2
e−iω0t |2〉

and we notice that,

| 〈1|ψ〉 |2 = | 〈2|ψ〉 |2 =
1

2

Thus, the probabilities for the atom to be in either state does not change in time.

The system is still in the state prepared in 3. The operator associated with the electric dipole

moment is written D̂ =

(
0 d
d 0

)

4. Explain why D̂ does not present any diagonal terms. Calculate 〈D̂〉, the expectation value
of D̂. How does it evolve in time ? Use this result to explain what a coherent transient is.

〈ψ(t)| D̂ |ψ(t)〉 =

(
1√
2
〈1|+ i√

2
e+iω0t 〈2|

)
D̂

(
1√
2
|1〉 − i√

2
e−iω0t |2〉

)
=
i

2
eiω0td− i

2
e−iω0td

=
id

2
2i sin(ω0t)

= −d sin(ω0t)

The dipole-moment oscillates at the Bohr-frequency ω0. This oscillation goes along with
emission of light at the same frequency. Although emitted at the same frequency ω0 as
spontaneous emission between the same two energy levels, this light has different properties
related to the coherence of the emission. The phase of the oscillations of the atomic dipole
is uniquely determined with respect to that of the incident wave. An assembly of atoms
all prepared by the same π/2-pulse will therefore all emit light with the same phase. This
is in contrast to what occurs with spontaneous emission, when individual atoms emit light
with a random phase.
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II - Optical transitions in a bulk semiconductor

We plan to establish the optical selection rules for an optical transition, under the influence of an
electric field E0 cos

(
ωt− i~k0 ·~r

)
, between the valence band (Ev, |ψv,kv(~r)〉) and the conduction

band (Ec, |ψc,kc(~r)〉) of a bulk semiconductor that presents a direct bandgap located at ~k = 0.
For simplicity, we assume that the potential seen by electrons in the crystal lattice is invariant
under a translation of vector ~a along the three directions of space.

1. What is a direct bandgap semiconductor? What is an indirect bandgap semiconductor?

2. The periodic parts of the wave-functions are noted uv,~kv(~r) and uc,~kc(~r) for the valence
band and the conduction band respectively. Write the total wave-functions |ψc,kc(~r)〉 and
|ψv,kv(~r)〉 associated with the electronic bands considered here. What are the properties
of uv,kv(~r) and uc,kc(~r) ? How are expanded the corresponding energies Ec and Ev in the
reciprocal space ?

|ψv,kv(~r)〉 ∝ N
∑
n

e−ikvnauv,kv(~r), |ψc,kc(~r)〉 ∝ N
∑
n

e−ikcnauc,kc(~r)

The properties of the Bloch-part of the wavefunction is to be periodic on the lattice-spacing.

At k 6= 0, the dispersion lift the degeneracy between bands of different j. Near the band
extrema, the Taylor expansions of the different energies are quadratic:

Ec;v = Ec;v(k0) + (k − k0)
∂Ec;v
∂k

+
1

2
(k − k0)2

∂2Ec;v
∂k2

+ · · ·

3. We denote |Wcv| the matrix element of the dipole moment operator −qE0r̂ exp
(
−i~k0 ·~r

)
evaluated between |ψv,kv(~r)〉 and |ψc,kc(~r)〉. What is the general definition of optical selec-
tion rules associated with the transition between two electronic states ?
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|Wcv| = −qE0 〈c, kc| r̂e−i
~k0 ·~r |v, kv〉 ∝

∫
u∗c,kc(~r)uv,kv(~r)ei~r · (~kc−~kv−~k0)r̂d

3~r

The optical transition is allowed if ~kc − ~kv = ~k0.

4. Describe qualitatively the main steps of the procedure that is used to write |Wcv| in a
factorized form:

|Wcv| ∝ f(~kv, ~kc)× g(uv,~kv , uc,~kc)

where f(~kv, ~kc) and g(uv,~kv , uc,~kc) will be made explicit. What properties of the wave-
function enable one to obtain this result ? What approximations are made ?

|Wcv| = −qE0 〈c, kc| r̂e−i
~k0 ·~r

〈c, kc| r̂e−i
~k0 ·~r

∣∣∣v,~kv〉 =
1

V

∫
crystal

u∗c,kc(~r)uv,kv(~r)ei~r · (~kc−~kv−~k0)r̂d3~r

The crystal being periodic, we can express ~r as:

~r = ~rj + ~R

where ~rj denotes the location of the jth unit cell and ~R the position within this unit cell.
The exponential functions are slowly varying in space as compared to uc and uv. The
integral over the whole crystal is broken up into a sum of integrals over all the primitive
cells

|Wcv| = −q
E0

V

∑
j

∫
unit cell

u∗c,kc(~rj + ~R)uv,kv(~rj + ~R)ei(~rj+
~R) · (~kc−~kv−~k0)(~rj + ~R)d3 ~R

The exponential functions are replaced by their average values in each primitive cell and
pulled out of the integral.

|Wcv| = −q
E0

V

∑
j

ei(
~kc−~kv−~k0) ·~rj

∫
unit cell

u∗c,kc(~rj + ~R)uv,kv(~rj + ~R)d3 ~R

We use the periodicity of uv and uc,

|Wcv| = −q
E0

V

∑
j

ei(
~kc−~kv−~k0) ·~rj

∫
unit cell

u∗c,kc(~rj)uv,kv(~rj)(~rj + ~R)d3 ~R

because of the orthogonality of the Bloch waves for different ~k, we arrive at

|Wcv| = −q
E0

V
δ~kc−~kv ,~k0

∫
unit cell

u∗c,kc(
~R)uv,kv(~R)~Rd3 ~R
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5. We assume that the wavelength of the incident light is in the visible spectral range. Dis-
cuss the possibility of a transition between the valence band and the conduction band as
a function of the initial and final electronic wave-vectors. What are the practical conse-
quences when comparing optical properties of indirect and direct bandgap semiconductors?

If our incident light is in the visible spectral range, at the scale of the first Brillouin zone,
the transitions are vertical in the reciprocal space: ~kc ≈ ~kv and thus,

|Wcv| ≈ −q
E0

V

∫
unit cell

u∗c,0(~R)uv,0(~R)~Rd3 ~R

6. We are now interested in a transition occurring at ~k ≈ 0. In this case, uv,~kv(~r) and
uc,~kc(~r) are eigenstates of the total angular momentum operator: uv,~kv=~0(~r) = |j; jz〉 and
uc,~kc=~0(~r) = |s; sz〉. The incident light is circularly polarized in the plane perpendicular to
the direction of quantization. The initial state is a valence state characterized by |j; jz〉,
the final state is a conduction state characterized by |s; sz〉. What are the possible values
of sz as a function of jz and of the light helicity ?

At the Γ point, uc,k and uv,k are eigenstate of the angular momentum operator

uc,0 = |s, sz〉 , uv,0 = |j, jz〉

When a circularly polarized photon is absorbed, this angular momentum is distributed
between the photo-excited electron and hole according to the selection rules determined
by the band structure of the semiconductor.

7. The valence band presents a p-like (l = 1) symmetry while the conduction band is s-like
(l = 0). This results in the existence of 6 valence states and 2 conduction states. Draw a
sketch of the different states at ~k = 0 with the corresponding values of |j; jz〉 and |s; sz〉.
Indicate the allowed transitions in the case of a circularly polarized light.


