1 Ising dimer

Let us consider two Ising spins \(s_i = \pm 1 \) \((i = 1, 2)\) forming a dimer. The two spins are subject to a uniform magnetic field \(H \), and interact through a ferromagnetic exchange interaction \(J \). The dimer is connected to a heat reservoir which maintains its temperature \(T \) constant. In what follows, we denote \(\beta = 1/k_B T \), with \(k_B \) the Boltzmann constant. The Hamiltonian of the system then reads

\[
H = -(s_1 + s_2)H - Js_1s_2.
\]

(a) What is the sign of \(J \)? Justify your answer.

The sign of \(J \) has to be positive, because, when forming a dimer, the two individual spins must reduce their energy, meaning that \(-J\) has to be of negative sign.

(b) At vanishing magnetic field \((H = 0)\) and zero temperature \((T = 0)\), what are the spin configurations?

Without any magnetic field \((H = 0)\), since it’s a ferromagnetic exchange interaction, all the spins are aligned in respect to the others.

(c) Calculate the exact canonical partition function \(Z \) and the free energy \(F \) of the system.

\[
Z = \sum_{s_1=\pm1} \sum_{s_2=\pm1} e^{\beta[(s_1+s_2)H+Js_1s_2]}
= \sum_{s_1=\pm1} \left\{ e^{\beta[(s_1+1)H+Js_1]} + e^{\beta[(s_1-1)H-Js_1]} \right\}
= e^{\beta[(1+1)H+J]} + e^{\beta[(s_1-1)H-J]} e^{\beta[(1+1)H-J]} + e^{\beta[(1-1)H+J]}
= e^{\beta J} \left\{ 2 \cosh(2\beta H) \right\} + 2e^{-\beta J}
\]

\[
F = -k_B T \ln Z
= -k_B T \ln \left\{ e^{\beta J} \left\{ 2 \cosh(2\beta H) \right\} + 2e^{-\beta J} \right\}
= -J - k_B T \ln \left\{ 2 \cosh(2\beta H) + 2e^{-2\beta J} \right\}
\]

(d) The average magnetization per spin \(m = \langle s_i \rangle \) of the system is given by

\[
m = -\frac{1}{2} \frac{\partial F}{\partial H}, \tag{1.1}
\]

(i) Justify expression (1.1).
(ii) Show that

\[m = \frac{\sinh(2\beta H)}{\cosh(2\beta H) + \exp(-2\beta J)}. \]

(iii) Without interaction between the two spins \((J = 0)\), prove that Eq. (1.2) recovers the paramagnetic behavior \(m = \tanh(\beta H)\).

\[m = \frac{\sinh(2\beta H)}{\cosh(2\beta H) + 1} \]

\[= \frac{\frac{e^{2\beta H} - e^{-2\beta H}}{2}}{\frac{e^{2\beta H} + e^{-2\beta H}}{2} + 1} \]

\[= \frac{e^{2\beta H} - e^{-2\beta H}}{e^{2\beta H} + e^{-2\beta H} + 2} \]

\[= \frac{(e^{\beta H} - e^{-\beta H})^2}{(e^{\beta H} + e^{-\beta H})^2} \]

\[= \tanh(\beta H) \]

(iv) For a given value of \(J\), plot \(m\) as a function of \(H\) for various temperatures. What happens in the \(T = 0\) limit? Does the system present a phase transition?
When T reach 0, m tend to be the sign function. This sytem has a phase transition for $T = 0$.

(e) The zero-field magnetic susceptibility is defined as

$$
\chi = \frac{\partial m}{\partial H}_{H=0}
$$

Calculate χ and comment on the $T = 0$ limit.

$$
\chi = \frac{\partial m}{\partial H}_{H=0} = \frac{\partial}{\partial H} \left\{ \frac{\sinh(2\beta H)}{\cosh(2\beta H) + e^{-2\beta J}} \right\}_{H=0} = \frac{2\beta e^{-2\beta J}}{(\cosh(2\beta H) + e^{-2\beta J})^2}_{H=0} = \frac{2\beta e^{-2\beta J}}{(1 + e^{-2\beta J})^2}
$$

Let’s check the limit for $T \to 0$,

$$
\lim_{T \to 0} \chi \approx \frac{2\beta(1 - 2\beta J)}{(2 - 2\beta J)} \approx \beta
$$

$$
\lim_{x \to 0} e^x \approx 1 + x
$$

We know that when the magnetic susceptibility diverges, there is a phase transition. Meaning here, the phase transition occurs at $T = 0$, which is coherent with what we drew for $m(H)$ earlier.
2 Van der Waals equation of state

Let us consider a system of $N \gg 1$ classical particles with mass m occupying a three-dimensional volume V at the temperature T. The particles have no internal degrees of freedom. The Hamiltonian of the system reads

$$\mathcal{H} = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m} + U(\vec{r}_1, \cdots, \vec{r}_N)$$

where \vec{r}_i and \vec{p}_i are the position and momentum of the i^{th} particle, and U is the interaction energy of the system.

2.1 Semiclassical partition function

We recall that the canonical partition function of the system is given, in the dilute limit, by

$$Z = \frac{1}{(2\pi \hbar)^{3N} N!} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N d^3\vec{p}_1 \cdots d^3\vec{p}_N e^{-\beta \mathcal{H}},$$

Using the result

$$\int_{-\infty}^{+\infty} du e^{-u^2} = \sqrt{\pi},$$

show that

$$Z = \frac{1}{N! \Lambda_T^{3N}} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \cdots, \vec{r}_N)}, \quad (2.1)$$

where $\Lambda_T = (2\pi \hbar^2/mk_B T)^{1/2}$ is the thermal de Broglie wavelength.

$$Z = \frac{1}{(2\pi \hbar)^{3N} N!} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N d^3\vec{p}_1 \cdots d^3\vec{p}_N e^{-\beta \mathcal{H}}$$

$$= \frac{1}{(2\pi \hbar)^{3N} N!} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N d^3\vec{p}_1 \cdots d^3\vec{p}_N e^{-\beta \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m} + U(\vec{r}_1, \cdots, \vec{r}_N)}}$$

$$= \frac{1}{(2\pi \hbar)^{3N} N!} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \cdots, \vec{r}_N)} \int d^3\vec{p}_1 \cdots d^3\vec{p}_N e^{-\beta \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m}} \quad \mathcal{P}_i = \sqrt{\frac{\beta}{2m}} p_i$$

$$= \frac{(2mk_B T)^{3N/2}}{(2\pi \hbar)^{3N} N!} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \cdots, \vec{r}_N)} \int d^3\vec{P}_1 \cdots d^3\vec{P}_N e^{-\sum_{i=1}^{N} \frac{\vec{P}_i^2}{2m}}$$

$$= \frac{(2mk_B T \pi)^{3N/2}}{(2\pi \hbar)^{3N} N!} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \cdots, \vec{r}_N)}$$

$$= \frac{1}{N! \Lambda_T^{3N}} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \cdots, \vec{r}_N)}$$
2.2 The ideal gas case

Let us first consider the case of an ideal gas, for which it is assumed that $U(\vec{r}_1, \cdots, \vec{r}_N) = 0$.

(a) In the noninteracting case, calculate the partition function (2.1) and the free energy F in the thermodynamic limit.\(^1\)

\[
Z = \frac{1}{(2\pi \hbar)^{3N}} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N d^3\vec{p}_1 \cdots d^3\vec{p}_N e^{-\beta H} \\
= \frac{1}{N! \Lambda_T^{3N}} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \cdots, \vec{r}_N)} \\
= \frac{1}{N! \Lambda_T^{3N}} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N \\
= \frac{V^N}{N! \Lambda_T^{3N}}
\]

\[
F = -k_B T \ln(Z) \\
= -Nk_B T \ln(V) + k_B T \ln(N!) + Nk_B T \ln(\Lambda_T^3) \\
= -Nk_B T \left\{ \ln\left(\frac{V}{N \Lambda_T^3} \right) + 1 \right\}
\]

(b) Deduce from the previous question the equation of state of the system.

We know the expression of the pressure,

\[
p = -\frac{\partial F}{\partial V} = \frac{Nk_B T}{V}
\]

Meaning the well known equation of state for a perfect gas,

\[pV = Nk_B T\]

(c) In a $P-V$ diagram, sketch the isothermal curves. Does the ideal gas model enable one to describe the liquid-gas phase transition?

1. We recall Stirling’s formula $\ln n! \approx n \ln n - n$ for $n \gg 1$
There is no phase transition, indeed, we need to have interactions in order to exhibit a phase transition.

2.3 Role of the molecular interactions

Let us now consider the interactions between pairs of molecules only, so that the interaction energy in Eq. (2.1) reads

\[
U(\vec{r}_1, \cdots, \vec{r}_N) = \frac{1}{2} \sum_{i,j=1, i \neq j}^{N} u(r_{ij})
\]

where \(u(r_{ij}) \) is the potential energy between two pairs of molecules separated by the distance \(r_{ij} = |\vec{r}_i - \vec{r}_j| \). In what follows, we assume that \(u(r) \) is a Lennard–Jones potential that takes the form

\[
u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]. \tag{2.2}
\]

The Lennard–Jones potential has a minimum at \(r = r_0 = 2^{1/6} \sigma \), for which it takes the value \(u(r_0) = -\varepsilon \).

(a) Sketch the Lennard–Jones potential (2.2) as a function of \(r \), and indicate on your graph where are the repulsive and attractive part of the interaction.
(b) Let us first consider the attractive part $\propto -r^{-6}$ of $u(r)$ and neglect the correlations between the particles. Within a mean-field approximation, assuming that the density of particles is uniform, show that

$$U(\vec{r}_1, \cdots, \vec{r}_N) \approx -\frac{aN^2}{V},$$

with

$$a = -\frac{1}{2} \int d^3\vec{r} u(r).$$

$$U(\vec{r}_1, \cdots, \vec{r}_N) = \frac{1}{2} \sum_{i,j=1}^{N} u(r_{ij})$$

We can fix \vec{r}_i, so we can take $\vec{r}_i = \vec{0}$,

$$\sum_{j=1}^{N} u(r_{ij}) = \sum_{j=1}^{N} u(\vec{r}_j)$$

But, there is a lot’s of particles, so we can replace the summation by an integral,

$$= \sum_{j=1}^{N} u(\vec{r}_j) \approx \int d^3\vec{r} n(\vec{r}) u(r)$$

where $n(\vec{r})$ is the density of particles, we can say that this density is homogeneous, $n(\vec{r}) = N/V$ and so,

$$\sum_{j=1}^{N} u(r_{ij}) \approx \frac{N}{V} \int d^3\vec{r} u(r)$$
This integral doesn’t depend on \(i \), we can call it \(-2a\), so,

\[
U(\vec{r}_1, \ldots, \vec{r}_N) \simeq \frac{1}{2} \left(-\frac{2aN}{V} \right) N
\]

where the right \(N \) comes from the summation over \(i \). Meaning, that, in the end,

\[
U(\vec{r}_1, \ldots, \vec{r}_N) \simeq -\frac{aN^2}{V},
\]

(c) Close to a given particle, the approximation above is not valid any longer and one has to take into account the repulsive part \(\propto r^{-12} \) of the pair potential (2.2). To this end, we assume that the particles are hard spheres of radius \(R \) and that each particle has an excluded volume \(b \). Give an expression of \(b \) as a function of \(R \). Justify that when integrating over the particle positions in Eq. (2.1), one has to integrate over \(V - Nb \) instead of \(V \), as was done in the ideal gas case.

\[
V_{\text{true volume}} = V_{\text{total}} - (N - 1)b \approx V_{\text{total}} - Nb \quad \quad b = \frac{4}{3}\pi(2R)^3
\]

(d) Considering the approximations of questions (b) and (c) above, show that Eq. (2.1) takes the form

\[
Z \simeq \frac{(V - Nb)^N}{N! \Lambda_T^{3N}} e^{\beta aN^2/V},
\]

and calculate \(F \) in the thermodynamic limit.

\[
Z = \frac{1}{N! \Lambda_T^{3N}} \int d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \ldots, \vec{r}_N)}
\approx \frac{1}{N! \Lambda_T^{3N}} \int_{V-Nb} d^3\vec{r}_1 \cdots d^3\vec{r}_N e^{-\beta U(\vec{r}_1, \ldots, \vec{r}_N)}
= \frac{(V - Nb)^N}{N! \Lambda_T^{3N}} e^{\beta aN^2/V}
\]

\[
F = -k_B T \ln Z = \frac{(V - Nb)^N}{N! \Lambda_T^{3N}} e^{\beta aN^2/V} \}
= -Nk_B T \ln \left(\frac{V - Nb}{\Lambda_T^3} \right) - \frac{aN^2}{V} + (-N \ln N + N)(-k_B T)
\]
(e) Deduce from the above results the van der Waals equation of state

\[
\left(P + a \frac{N^2}{V^2} \right) (V - Nb) = Nk_B T
\]

(2.3)

\[
p = -\frac{\partial F}{\partial V} = \frac{Nk_B T}{V - Nb} - \frac{aN^2}{V^2}
\]

We indeed recover van der Waals equation of state,

\[
\left(P + a \frac{N^2}{V^2} \right) (V - Nb) = Nk_B T
\]

2.4 Isothermal curves

(a) Sketch the isothermal curves (2.3) in a \(P - V \) diagram. In particular, show that there exists a critical temperature \(T_c \) below which the isothermal curves are no longer monotonic functions.

(b) For the critical isothermal curve, there exists an inflection point \((P_c, V_c) \) called the critical point. Give the expressions of \(P_c, V_c, \) and \(T_c \) as a function of \(a \) and \(b \).
At V_c, the slopes are equal, meaning,

$$\begin{align*}
\frac{\partial}{\partial V} (V - Nb) &= \frac{\partial}{\partial V} \left(\sqrt{\frac{k_BT}{2aN}} V^{3/2} \right) \\
V - Nb &= \sqrt{\frac{k_BT}{2aN}} V^{3/2}
\end{align*}$$

From the first equation we get,

$$1 = \sqrt{\frac{k_BT_c}{2aN}} V_c^{1/2}$$

Meaning,

$$k_BT_c = \frac{8aN}{9V_c}$$

From the second equation,

$$V - Nb = \sqrt{\frac{k_BT}{2aN}} V^{3/2} = \frac{2}{3} V_c$$

Meaning,

$$V_c = 3Nb$$

So now,

$$k_BT_c = \frac{8aN}{9V_c} = \frac{8aN}{9\cdot3Nb} = \frac{8a}{27b}$$
Then, the pressure,

\[P_c = \frac{N k_B T_c}{V_c - N b} - a \frac{N^2}{V_c^2} \]

\[= \frac{N}{2} \frac{8 a}{27 b} - \frac{a N^2}{9 N^2 b^2} \]

Meaning,

\[P_c = \frac{1}{27} \frac{a}{b^2} \]

(c) Plot the free energy \(F \) as a function of \(V \) for \(T > T_c \) and \(T < T_c \).

\[\tau > \tau_c \]

\[\tau < \tau_c \]

(d) One can show that a thermodynamical system for which \((\partial P/\partial V)_T > 0 \) is unstable. What are the regions in the \(P - V \) and \(F - V \) diagrams which correspond to thermodynamically unstable states?

The region in between \(V_- \) and \(V_+ \) is thermodynamically unstable.

(e) Qualitatively explain how to remedy to this incoherence of the van der Waals model, and how to describe the liquid-gas transition.